Skip to main content
Log in

One-step method to simultaneously synthesize separable Te and GeTe nanosheets

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The chemical vapor deposition (CVD) method has been widely used to synthesize high-quality two-dimensional (2D) materials. However, just one type of product can be synthesized by general CVD at one time. Here, we demonstrate a one-step CVD method to simultaneously grow two types of products. Importantly, the products can be completely separated by selecting the deposition region. In detail, the controllable and completely separable growth for α-GeTe and Te nanosheets was realized by using one precursor-GeTe powder through the atmospheric pressure CVD (APCVD) approach. High crystal quality of the as-grown α-GeTe nansosheets and Te nanosheets have been proved by the high-resolution transmission electron microscopy (HRTEM) characterization. Further, the field-effect-transistor (FET) based on α-GeTe nanosheet manifests that the as-grown α-GeTe nanosheet is a degenerate semiconductor due to the intrinsic Ge vacancies. Additionally, Te-based FET devices indicate that the good electrical performance of the as-grown Te nanosheet, such as high mobility of 900 cm2V−1s−1 (at room temperature), high on/off ratio of < 106 (at 77 K), and good air-stability. The developed one-step CVD method shows the huge potentials for high-efficiency and high-quality material growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cao, W.; Kang, J. H.; Sarkar, D.; Liu, W.; Banerjee, K. 2D semiconductor FETs—Projections and design for sub-10 nm VLSI. IEEE Trans. Electron Devices 2015, 62, 3459–3469.

    Article  CAS  Google Scholar 

  2. Butler, S. Z.; Hollen, S. M.; Cao, L. Y.; Cui, Y.; Gupta, J. A.; Gutiérrez, H. R.; Heinz, T. F.; Hong, S. S.; Huang, J. X.; Ismach, A. F. et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 2013, 7, 2898–2926.

    Article  CAS  Google Scholar 

  3. Li, X. S.; Cai, W. W.; An, J.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.

    Article  CAS  Google Scholar 

  4. Gao, Y.; Liu, Z. B.; Sun, D. M.; Huang, L.; Ma, L. P.; Yin, L. C.; Ma, T.; Zhang, Z. Y.; Ma, X. L.; Peng, L. M. et al. Large-area synthesis of high-quality and uniform monolayer WS2 on reusable Au foils. Nat. Commun. 2015, 6, 8569.

    Article  CAS  Google Scholar 

  5. Duan, X. D.; Wang, C.; Shaw, J. C.; Cheng, R.; Chen, Y.; Li, H. L.; Wu, X. P.; Tang, Y.; Zhang, Q. L.; Pan, A. L. et al. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat. Nanotechnol. 2014, 9, 1024–1030.

    Article  CAS  Google Scholar 

  6. Wang, M. H.; Huang, M.; Luo, D.; Li, Y. Q.; Choe, M.; Seong, W. K.; Kim, M.; Jin, S.; Wang, M. R.; Chatterjee, S. et al. Single-crystal, large-area, fold-free monolayer graphene. Nature 2021, 596, 519–524.

    Article  CAS  Google Scholar 

  7. Xu, X. Z.; Zhang, Z. H.; Qiu, L.; Zhuang, J. N.; Zhang, L.; Wang, H.; Liao, C. N.; Song, H. D.; Qiao, R. X.; Gao, P. et al. Ultrafast growth of single-crystal graphene assisted by a continuous oxygen supply. Nat. Nanotechnol. 2016, 11, 930–935.

    Article  CAS  Google Scholar 

  8. Wang, J. H.; Xu, X. Z.; Cheng, T.; Gu, L. H.; Qiao, R. X.; Liang, Z. H.; Ding, D. D.; Hong, H.; Zheng, P. M.; Zhang, Z. B. et al. Dual-coupling-guided epitaxial growth of wafer-scale single-crystal WS2 monolayer on vicinal a-plane sapphire. Nat. Nanotechnol. 2022, 17, 33–38.

    Article  CAS  Google Scholar 

  9. Li, T. T.; Guo, W.; Ma, L.; Li, W. S.; Yu, Z. H.; Han, Z.; Gao, S.; Liu, L.; Fan, D. X.; Wang, Z. X. et al. Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat. Nanotechnol. 2021, 16, 1201–1207.

    Article  CAS  Google Scholar 

  10. Chen, T. A.; Chuu, C. P.; Tseng, C. C.; Wen, C. K.; Wong, H. S. P.; Pan, S. Y.; Li, R. T.; Chao, T. A.; Chueh, W. C.; Zhang, Y. F. et al. Wafer-scale single-crystal hexagonal boron nitride monolayers on Cu (111). Nature 2020, 579, 219–223.

    Article  CAS  Google Scholar 

  11. Zhang, Y. S.; Shi, J. P.; Han, G. F.; Li, M. J.; Ji, Q. Q.; Ma, D. L.; Zhang, Y.; Li, C.; Lang, X. Y.; Zhang, Y. F. et al. Chemical vapor deposition of monolayer WS2 nanosheets on Au foils toward direct application in hydrogen evolution. Nano Res. 2015, 8, 2881–2890.

    Article  CAS  Google Scholar 

  12. Zhang, Y.; Zhang, Y. F.; Ji, Q. Q.; Ju, J.; Yuan, H. T.; Shi, J. P.; Gao, T.; Ma, D. L.; Liu, M. X.; Chen, Y. B. et al. Controlled growth of high-quality monolayer WS2 layers on sapphire and imaging its grain boundary. ACS Nano 2013, 7, 8963–8971.

    Article  CAS  Google Scholar 

  13. Huang, X. C.; Guan, J. Q.; Lin, Z. J.; Liu, B.; Xing, S. Y.; Wang, W. H.; Guo, J. D. Epitaxial growth and band structure of Te film on graphene. Nano Lett. 2017, 17, 4619–4623.

    Article  CAS  Google Scholar 

  14. Zhu, Z. L.; Cai, X. L.; Yi, S.; Chen, J. L.; Dai, Y. W.; Niu, C. Y.; Guo, Z. X.; Xie, M. H.; Liu, F.; Cho, J. H. et al. Multivalency-driven formation of Te-based monolayer materials: A combined first-principles and experimental study. Phys. Rev. Lett. 2017, 119, 106101.

    Article  Google Scholar 

  15. Coker, A.; Lee, T.; Das, T. P. Investigation of the electronic properties of tellurium-energy-band structure. Phys. Rev. B 1980, 22, 2968–2975.

    Article  CAS  Google Scholar 

  16. Wang, Y. X.; Qiu, G.; Wang, R. X.; Huang, S. Y.; Wang, Q. X.; Liu, Y. Y.; Du, Y. C.; Goddard, W. A.; Kim, M. J.; Xu, X. F. et al. Field-effect transistors made from solution-grown two-dimensional tellurene. Nat. Electron. 2018, 1, 228–236.

    Article  Google Scholar 

  17. Tong, L.; Huang, X. Y.; Wang, P.; Ye, L.; Peng, M.; An, L. C.; Sun, Q. D.; Zhang, Y.; Yang, G. M.; Li, Z. et al. Stable mid-infrared polarization imaging based on quasi-2D tellurium at room temperature. Nat. Commun. 2020, 11, 2308.

    Article  CAS  Google Scholar 

  18. Qiu, G.; Niu, C.; Wang, Y. X.; Si, M. W.; Zhang, Z. C.; Wu, W. Z.; Ye, P. D. Quantum hall effect of weyl fermions in n-type semiconducting tellurene. Nat. Nanotechnol. 2020, 15, 585–591.

    Article  CAS  Google Scholar 

  19. Wang, Y.; Xiao, C. C.; Chen, M. G.; Hua, C. Q.; Zou, J. D.; Wu, C.; Jiang, J. Z.; Yang, S. A.; Lu, Y. H.; Ji, W. Two-dimensional ferroelectricity and switchable spin-textures in ultra-thin elemental Te multilayers. Mater. Horiz. 2018, 5, 521–528.

    Article  Google Scholar 

  20. Wang, Y. X.; Yao, S. K.; Liao, P. L.; Jin, S. Y.; Wang, Q. X.; Kim, M. J.; Cheng, G. J.; Wu, W. Z. Strain-engineered anisotropic optical and electrical properties in 2D chiral-chain tellurium. Adv. Mater. 2020, 32, 2002342.

    Article  CAS  Google Scholar 

  21. Shen, C. F.; Liu, Y. H.; Wu, J. B.; Xu, C.; Cui, D. Z.; Li, Z.; Liu, Q. Z.; Li, Y. R.; Wang, Y. X.; Cao, X. et al. Tellurene photodetector with high gain and wide bandwidth. ACS Nano 2020, 14, 303–310.

    Article  CAS  Google Scholar 

  22. Safdar, M.; Zhan, X. Y.; Niu, M. T.; Mirza, M.; Zhao, Q.; Wang, Z. X.; Zhang, J. P.; Sun, L. F.; He, J. Site-specific nucleation and controlled growth of a vertical tellurium nanowire array for high performance field emitters. Nanotechnology 2013, 24, 185705.

    Article  Google Scholar 

  23. Wang, Q. S.; Safdar, M.; Xu, K.; Mirza, M.; Wang, Z. X.; He, J. Van der Waals epitaxy and photoresponse of hexagonal tellurium nanoplates on flexible mica sheets. ACS Nano 2014, 8, 7497–7505.

    Article  CAS  Google Scholar 

  24. Krusin-Elbaum, L.; Cabral Jr, C.; Chen, K. N.; Copel, M.; Abraham, D. W.; Reuter, K. B.; Rossnagel, S. M.; Bruley, J.; Deline, V. R. Evidence for segregation of Te in Ge2Sb2Te5 films: Effect on the “phase-change” stress. Appl. Phys. Lett. 2007, 90, 141902.

    Article  Google Scholar 

  25. Chen, K. N.; Cabral, C.; Krusin-Elbaum, L. Thermal stress effects of Ge2Sb2Te5 phase change material: Irreversible modification with Ti adhesion layers and segregation of Te. Microelectron. Eng. 2008, 85, 2346–2349.

    Article  CAS  Google Scholar 

  26. Rinaldi, C.; Varotto, S.; Asa, M.; Slawińska, J.; Fujii, J.; Vinai, G.; Cecchi, S.; Di Sante, D.; Calarco, R.; Vobornik, I. et al. Ferroelectric control of the spin texture in GeTe. Nano Lett. 2018, 18, 2751–2758.

    Article  CAS  Google Scholar 

  27. Di Sante, D.; Barone, P.; Bertacco, R.; Picozzi, S. Electric control of the giant rashba effect in bulk GeTe. Adv. Mater. 2013, 25, 509–513.

    Article  CAS  Google Scholar 

  28. Liebmann, M.; Rinaldi, C.; Di Sante, D.; Kellner, J.; Pauly, C.; Wang, R. N.; Boschker, J. E.; Giussani, A.; Bertoli, S.; Cantoni, M. et al. Giant rashba-type spin splitting in ferroelectric GeTe(111). Adv. Mater. 2016, 28, 560–565.

    Article  CAS  Google Scholar 

  29. Callen, H. B. Electronic structure, infrared absorption, and hall effect in tellurium. J. Chem. Phys. 1954, 22, 518–522.

    Article  CAS  Google Scholar 

  30. von Hippel, A. Structure and conductivity in the VIb, group of the periodic system. J. Chem. Phys. 1948, 16, 372–380.

    Article  CAS  Google Scholar 

  31. Du, Y. C.; Qiu, G.; Wang, Y. X.; Si, M. W.; Xu, X. F.; Wu, W. Z.; Ye, P. D. One-dimensional van der waals material tellurium: Raman spectroscopy under strain and magneto-transport. Nano Lett. 2017, 17, 3965–3973.

    Article  CAS  Google Scholar 

  32. Tong, F.; Liu, J. D.; Cheng, X. M.; Hao, J. H.; Gao, G. Y.; Tong, H.; Miao, X. S. Lattice strain induced phase selection and epitaxial relaxation in crystalline GeTe thin film. Thin Solid Films 2014, 568, 70–73.

    Article  CAS  Google Scholar 

  33. Xie, Z. J.; Xing, C. Y.; Huang, W. C.; Fan, T. J.; Li, Z. J.; Zhao, J. L.; Xiang, Y. J.; Guo, Z. N.; Li, J. Q.; Yang, Z. G. et al. Ultrathin 2D nonlayered tellurium nanosheets: Facile liquid-phase exfoliation, characterization, and photoresponse with high performance and enhanced stability. Adv. Funct. Mater. 2018, 28, 1705833.

    Article  Google Scholar 

  34. Andrikopoulos, K. S.; Yannopoulos, S. N.; Voyiatzis, G. A.; Kolobov, A. V.; Ribes, M.; Tominaga, J. Raman scattering study of the a-GeTe structure and possible mechanism for the amorphous to crystal transition. J. Phys. Condens. Matter 2006, 18, 965–979.

    Article  CAS  Google Scholar 

  35. Andrikopoulos, K. S.; Yannopoulos, S. N.; Kolobov, A. V.; Fons, P.; Tominaga, J. Raman scattering study of GeTe and Ge2Sb2Te5 phase-change materials. J. Phys. Chem. Solids 2007, 68, 1074–1078.

    Article  CAS  Google Scholar 

  36. Qin, J. K.; Liao, P. Y.; Si, M. W.; Gao, S. Y.; Qiu, G.; Jian, J.; Wang, Q. X.; Zhang, S. Q.; Huang, S. Y.; Charnas, A. et al. Raman response and transport properties of tellurium atomic chains encapsulated in nanotubes. Nat. Electron. 2020, 3, 141–147.

    Article  CAS  Google Scholar 

  37. Kriegner, D.; Springholz, G.; Richter, C.; Pilet, N.; Müller, E.; Capron, M.; Berger, H.; Holý, V.; Dil, J. H.; Krempaský, J. Ferroelectric self-poling in GeTe films and crystals. Crystals 2019, 9, 335.

    Article  CAS  Google Scholar 

  38. Wang, X. J.; Zhou, L. J.; Feng, J. L.; Wang, S.; Qian, H.; Tong, H.; Miao, X. S. Self-screening induced abnormal stability of ferroelectric phase in GeTe ultrathin films. Appl. Phys. Lett. 2018, 113, 232903.

    Article  Google Scholar 

  39. Fons, P.; Kolobov, A. V.; Krbal, M.; Tominaga, J.; Andrikopoulos, K. S.; Yannopoulos, S. N.; Voyiatzis, G. A.; Uruga, T. Phase transition in crystalline GeTe: Pitfalls of averaging effects. Phys. Rev. B 2010, 82, 155209.

    Article  Google Scholar 

  40. Bahl, S. K.; Chopra, K. L. Amorphous versus crystalline GeTe films. II. Optical properties. J. Appl. Phys. 1969, 40, 4940–4947.

    Article  CAS  Google Scholar 

  41. Edwards, A. H.; Pineda, A. C.; Schultz, P. A.; Martin, M. G.; Thompson, A. P.; Hjalmarson, H. P. Theory of persistent, p-type, metallic conduction in c-GeTe. J. Phys. Condens. Matter 2005, 17, L329–L335.

    Article  CAS  Google Scholar 

  42. Edwards, A. H.; Pineda, A. C.; Schultz, P. A.; Martin, M. G.; Thompson, A. P.; Hjalmarson, H. P.; Umrigar, C. J. Electronic structure of intrinsic defects in crystalline germanium telluride. Phys. Rev. B 2006, 73, 045210.

    Article  Google Scholar 

  43. Amani, M.; Tan, C. L.; Zhang, G.; Zhao, C. S.; Bullock, J.; Song, X. H.; Kim, H.; Shrestha, V. R.; Gao, Y.; Crozier, K. B. et al. Solution-synthesized high-mobility tellurium nanoflakes for short-wave infrared photodetectors. ACS Nano 2018, 12, 7253–7263.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2018YFA0703700), the National Natural Science Foundation of China (Nos. 91964203 and 61974036), the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB44000000), and the CAS Key Laboratory of Nanosystem and Hierarchical Fabrication. The authors also gratefully acknowledge the support of Youth Innovation Promotion Association CAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenxing Wang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Y., Zhan, X., Ding, C. et al. One-step method to simultaneously synthesize separable Te and GeTe nanosheets. Nano Res. 15, 6736–6742 (2022). https://doi.org/10.1007/s12274-022-4330-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4330-6

Keywords

Navigation