Skip to main content
Log in

Revealing efficient catalytic performance of N-CuOx for aerobic oxidative coupling of aliphatic alkynes: A Langmuir—Hinshelwood reaction mechanism

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Oxidative couplings of aliphatic alkynes are crucial for the production of naturally occurring 1,3-diynes. Herein we report the novel approach for effective synthesis of unsaturated coordinated N doped copper oxides (N-CuOx) catalyst, and uncover that N-CuOx catalyst as an additive-free and cost-effective heterogeneous catalyst has highly catalytic performance for directly oxidative coupling of aliphatic alkynes. The key to achieve efficient oxidative coupling of aliphatic alkynes is the synergistic effect of N species and uncoordinated O/Cu species caused by N dopants, which undergoes the Langmuir-Hinshelwood reaction mechanism. The N-CuOx catalyst displays ∼ 89.1% yield for hexadeca-7,9-diyne under mild conditions and stable reusability (5 cycles), showing significant advances compared with the traditionally copper oxides. These findings highlight the heteroatom dopants that provide a new methodology for designing efficient copper catalysts in synthesis of naturally occurring 1,3-diynes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hohmann, C.; Schneider, K.; Bruntner, C.; Irran, E.; Nicholson, G.; Bull, A. T.; Jones, A. L.; Brown, R.; Stach, J. E. M.; Goodfellow, M. et al. Caboxamycin, a new antibiotic of the benzoxazole family produced by the deep-sea strain Streptomyces sp. NTK 937. J. Antibiot. 2009, 62, 99–104.

    Article  CAS  Google Scholar 

  2. Hu, J. P.; Liang, Z. F.; Shen, K. C.; Xie, L.; Zhang, H.; Huang, C. Q.; Huang, Y. B.; Huang, H.; Tang, J. X.; Jiang, Z. et al. Identifying the convergent reaction path from predesigned assembled structures: Dissymmetrical dehalogenation of Br2Py on Ag (111). Nano Res. 2021, 14, 4704–4713.

    Article  CAS  Google Scholar 

  3. Rida, S. M.; Ashour, F. A.; El-Hawash, S. A. M.; ElSemary, M. M.; Badr, M. H.; Shalaby, M. A. Synthesis of some novel benzoxazole derivatives as anticancer, anti-HIV-1 and antimicrobial agents. Eur. J. Med. Chem. 2005, 40, 949–959.

    Article  CAS  Google Scholar 

  4. Han, S.; Kim, H. S.; Zhang, M. S.; Xia, Y. Z.; Lee, S. Ni/Cu-catalyzed decarboxylative addition of alkynoic acids to terminal alkynes for the synthesis of gem-1,3-enynes. Org. Lett. 2019, 21, 5426–5431.

    Article  CAS  Google Scholar 

  5. Knutson, P. C.; Fredericks, H. E.; Ferreira, E. M. Synthesis of 1,3-diynes via cadiot-chodkiewicz coupling of volatile, in situ generated bromoalkynes. Org. Lett. 2018, 20, 6845–6849.

    Article  CAS  Google Scholar 

  6. Shi Shun, A. L. K.; Tykwinski, R. R. Synthesis of naturally occurring polyynes. Angew. Chem., Int. Ed. 2006, 45, 1034–1057.

    Article  Google Scholar 

  7. Bédard, A. C.; Collins, S. K. Phase separation as a strategy toward controlling dilution effects in macrocyclic Glaser-Hay couplings. J. Am. Chem. Soc. 2011, 133, 19976–19981.

    Article  Google Scholar 

  8. Ren, P.; Li, Q. L.; Song, T.; Yang, Y. Facile fabrication of the Cu-N-C catalyst with atomically dispersed unsaturated Cu-N2 active sites for highly efficient and selective Glaser-Hay coupling. ACS Appl. Mater. Interfaces 2020, 12, 27210–27218.

    Article  CAS  Google Scholar 

  9. Chen, J. F.; Li, C. K. Cobalt-catalyzed gem-cross-dimerization of terminal alkynes. ACS Catal. 2020, 10, 3881–3889.

    Article  CAS  Google Scholar 

  10. Chen, Z.; Shen, R. G.; Chen, C.; Li, J. P.; Li, Y. D. Synergistic effect of bimetallic PdAu nanocrystals on oxidative alkyne homocoupling. Chem. Commun. 2018, 54, 13155–13158.

    Article  CAS  Google Scholar 

  11. Liu, L. C.; Matsushita, T.; Concepción, P.; Leyva-Pérez, A.; Corma, A. Facile synthesis of surface-clean monodispersed CuOx nanoparticles and their catalytic properties for oxidative coupling of alkynes. ACS Catal. 2016, 6, 2211–2221.

    Article  CAS  Google Scholar 

  12. Biswas, S.; Mullick, K.; Chen, S. Y.; Kriz, D. A.; Shakil, M. D.; Kuo, C. H.; Angeles-Boza, A. M.; Rossi, A. R.; Suib, S. L. Mesoporous copper/manganese oxide catalyzed coupling of alkynes: Evidence for synergistic cooperative catalysis. ACS Catal. 2016, 6, 5069–5080.

    Article  CAS  Google Scholar 

  13. Zhang, R. X.; Chen, Y.; Ding, M. H.; Zhao, J. Heterogeneous Cu catalyst in organic transformations. Nano Res. 2022, 15, 2810–2833.

    Article  Google Scholar 

  14. Zhang, S. L.; Liu, X. Y.; Wang, T. Q. An efficient copper-catalyzed homocoupling of terminal alkynes to give symmetrical 1,4-disubstituted 1,3-diynes. Adv. Synth. Catal. 2011, 353, 1463–1466.

    Article  CAS  Google Scholar 

  15. Ye, X. H.; Peng, H. H.; Wei, C. Y.; Yuan, T.; Wojtas, L.; Shi, X. D. Gold-catalyzed oxidative coupling of alkynes toward the synthesis of cyclic conjugated diynes. Chem 2018, 4, 1983–1993.

    Article  CAS  Google Scholar 

  16. Harcken, C.; Brückner, R.; Rank, E. Total syntheses of (—)-grandinolide and (—)-sapranthin by the sharpless asymmetric dihydroxylation of methyl trans-3-pentenoate: Elucidation of the stereostructure of (—)-sapranthin. Chem. Eur. J. 1998, 4, 2342–2352.

    Article  CAS  Google Scholar 

  17. Barrero, A. F.; Herrador, M. M.; Akssira, M.; Arteaga, P.; Romera, J. L. Lignans and polyacetylenes from Bupleurumacutifolium. J. Nat. Prod 1999, 62, 946–948.

    Article  CAS  Google Scholar 

  18. Ding, Y. Q.; Wu, Q. Q.; Lin, B.; Guo, Y. L.; Guo, Y.; Wang, Y. S.; Wang, L.; Zhan, W. C. Superior catalytic activity of a Pd catalyst in methane combustion by fine-tuning the phase of ceria-zirconia support. Appl. Catal. B: Environ. 2020, 266, 118631.

    Article  CAS  Google Scholar 

  19. Li, F. F.; Tang, J.; Ke, Q. P.; Guo, Y.; Ha, M. N.; Wan, C.; Lei, Z. P.; Gu, J.; Ling, Q.; Nguyen, V. N. et al. Investigation into enhanced catalytic performance for epoxidation of styrene over LaSrCoxFe2−xO6 double perovskites: The role of singlet oxygen species promoted by the photothermal effect. ACS Catal. 2021, 11, 11855–11866.

    Article  CAS  Google Scholar 

  20. Jing, H. Y.; Liu, W.; Zhao, Z. Y.; Zhang, J. W.; Zhu, C.; Shi, Y. T.; Wang, D. S.; Li, Y. D. Electronics and coordination engineering of atomic cobalt trapped by oxygen-driven defects for efficient cathode in solar cells. Nano Energy 2021, 89, 106365.

    Article  CAS  Google Scholar 

  21. Liu, H.; Jia, W. L.; Yu, X.; Tang, X.; Zeng, X. H.; Sun, Y.; Lei, T. Z.; Fang, H. Y.; Li, T. Y.; Lin, L. Vitamin C-assisted synthesized Mn-Co oxides with improved oxygen vacancy concentration: Boosting lattice oxygen activity for the air-oxidation of 5-(hydroxymethyl)furfural. ACS Catal. 2021, 11, 7828–7844.

    Article  CAS  Google Scholar 

  22. Tang, J.; Cao, Y. L.; Ruan, F.; Li, F. F.; Jin, Y. X.; Ha, M. N.; Han, X. Y.; Ke, Q. P. New approach for controllable synthesis of N-MnOx microflowers and their superior catalytic performance for benzoxazole synthesis. Ind. Eng. Chem. Res. 2020, 59, 9408–9413.

    Article  CAS  Google Scholar 

  23. Jin, Y. X.; Li, F. F.; Cui, P. X.; Yang, Y.; Ke, Q. P.; Ha, M. N.; Zhan, W. C.; Ruan, F.; Wan, C.; Lei, Z. et al. Jahn-Teller distortion assisted interstitial nitrogen engineering: Enhanced oxygen dehydrogenation activity of N-doped MnxCo3−xO4 hierarchical micro-nano particles. Nano Res. 2021, 14, 2637–2643.

    Article  CAS  Google Scholar 

  24. Ke, Q. P.; Jin, Y. X.; Ruan, F.; Ha, M. N.; Li, D. D.; Cui, P. X.; Cao, Y. L.; Wang, H.; Wang, T. T.; Nguyen, V. N. et al. Boosting the activity of catalytic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran over nitrogen-doped manganese oxide catalysts. Green Chem. 2019, 21, 4313–4318.

    Article  CAS  Google Scholar 

  25. Ruan, F.; Li, F. F.; Dong, Z. P.; Ke, Q. P.; Jin, Y. X.; Zhan, W. C.; Ha, M. N.; Tang, J. Enhanced activity for aerobic oxidative of alcohols over manganese oxides stimulated with interstitial nitrogen doping. Green Synth. Catal. 2021, 2, 38–44.

    Article  Google Scholar 

  26. Xiao, X. X.; Xu, Y.; Bhavanarushi, S.; Liu, B.; Lv, X. M. Selective C-C coupling of terminal alkynes under an air atmosphere without base over Cu-Nx-C catalysts. New J. Chem. 2020, 44, 20993–20998.

    Article  CAS  Google Scholar 

  27. Liu, A. N.; Liu, L. C.; Cao, Y.; Wang, J. M.; Si, R.; Gao, F.; Dong, L. Controlling dynamic structural transformation of atomically dispersed CuOx species and influence on their catalytic performances. ACS Catal. 2019, 9, 9840–9851.

    Article  CAS  Google Scholar 

  28. Balčytis, A.; Ryu, M.; Seniutinas, G.; Juodkazytė, J.; Cowie, B. C. C.; Stoddart, P. R.; Zamengo, M.; Morikawa, J.; Juodkazis, S. Black-CuO: Surface-enhanced Raman scattering and infrared properties. Nanoscale 2015, 7, 18299–18304.

    Article  Google Scholar 

  29. Liu, J. H.; Zhang, T. K.; Wang, Z. C.; Dawson, G.; Chen, W. Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity. J. Mater. Chem. 2011, 21, 14398–14401.

    Article  CAS  Google Scholar 

  30. Li, J. J.; Zan, W. Y.; Kang, H. X.; Dong, Z. P.; Zhang, X. M.; Lin, Y. X.; Mu, Y. W.; Zhang, F. W.; Zhang, X. M.; Gu, J. Graphitic-N highly doped graphene-like carbon: A superior metal-free catalyst for efficient reduction of CO2. Appl. Catal. B: Environ. 2021, 298, 120510.

    Article  CAS  Google Scholar 

  31. Zhang, X. R.; Wang, Y. Q.; Wang, K.; Huang, Y. L.; Lyu, D. D.; Yu, F.; Wang, S. B.; Tian, Z. Q.; Shen, P. K.; Jiang, S. P. Active sites engineering via tuning configuration between graphitic-N and thiophenic-S dopants in one-step synthesized graphene nanosheets for efficient water-cycled electrocatalysis. Chem. Eng. J. 2021, 416, 129096.

    Article  CAS  Google Scholar 

  32. Su, Y. H.; Jiang, H. L.; Zhu, Y. H.; Yang, X. L.; Shen, J. H.; Zou, W. J.; Chen, J. D.; Li, C. Z. Enriched graphitic N-doped carbon-supported Fe3O4 nanoparticles as efficient electrocatalysts for oxygen reduction reaction. J. Mater. Chem. A 2014, 2, 7281–7287.

    Article  CAS  Google Scholar 

  33. Peng, S. J.; Gong, F.; Li, L. L.; Yu, D. S.; Ji, D. X.; Zhang, T. R.; Hu, Z.; Zhang, Z. Q.; Chou, S. L.; Du, Y. H. et al. Necklace-like multishelled hollow spinel oxides with oxygen vacancies for efficient water electrolysis. J. Am. Chem. Soc. 2018, 140, 13644–13653.

    Article  CAS  Google Scholar 

  34. Gao, Q. Q.; Dai, Y. Q.; Li, C. B.; Yang, L. G.; Li, X. C.; Cui, C. J. Correlation between oxygen vacancies and dopant concentration in Mn-doped ZnO nanoparticles synthesized by co-precipitation technique. J. Alloys Compd. 2016, 684, 669–676.

    Article  CAS  Google Scholar 

  35. Chaabane, L.; Beyou, E.; Luneau, D.; Baouab, M. H. V. Functionalization of graphene oxide sheets with magnetite nanoparticles for the adsorption of copper ions and investigation of its potential catalytic activity toward the homocoupling of alkynes under green conditions. J. Catal. 2020, 388, 91–103.

    Article  CAS  Google Scholar 

  36. Alonso, F.; Yus, M. Heterogeneous catalytic homocoupling of terminal alkynes. ACS Catal. 2012, 2, 1441–1451.

    Article  CAS  Google Scholar 

  37. Yuan, Y. Y.; Wang, Y. Q.; Zhuang, G. L.; Li, Q. Y.; Yang, F. L.; Wang, X. J.; Han, X. G. Supporting a Cu@In2O3 core-shell structure on N-doped graphitic carbon cuboctahedral cages for efficient photocatalytic homo-coupling of terminal alkynes. J. Mater. Chem. A 2021, 9, 24909–24914.

    Article  CAS  Google Scholar 

  38. Zhu, Y.; Deng, N.; Feng, M. Q.; Liu, P. On the comparable activity in plasmonic photocatalytic and thermocatalytic oxidative homocoupling of alkynes over prereduced copper ferrite. Chin. J. Catal. 2019, 44, 1505–1515.

    Article  Google Scholar 

  39. Li, X. D.; Xie, X.; Sun, N.; Liu, Y. H. Gold-catalyzed cadiot-chodkiewicz-type cross-coupling of terminal alkynes with alkynyl hypervalent iodine reagents: Highly selective synthesis of unsymmetrical 1,3-diynes. Angew. Chem., Int. Ed. 2017, 56, 6994–6998.

    Article  CAS  Google Scholar 

  40. Yin, W. Y.; He, C.; Chen, M.; Zhang, H.; Lei, A. W. Nickel-catalyzed oxidative coupling reactions of two different terminal alkynes using O2 as the oxidant at room temperature: Facile syntheses of unsymmetric 1,3-diynes. Org. Lett. 2009, 11, 709–712.

    Article  CAS  Google Scholar 

  41. Peng, H. H.; Xi, Y. M.; Ronaghi, N.; Dong, B. L.; Akhmedov, N. G.; Shi, X. D. Gold-catalyzed oxidative cross-coupling of terminal alkynes: Selective synthesis of unsymmetrical 1,3-diynes. J. Am. Chem. Soc. 2014, 136, 13174–13177.

    Article  CAS  Google Scholar 

  42. Chakraborty, D.; Nandi, S.; Mullangi, D.; Haldar, S.; Vinod, C. P.; Vaidhyanathan, R. Cu/Cu2O nanoparticles supported on a phenol-pyridyl COF as a heterogeneous catalyst for the synthesis of unsymmetrical diynes via Glaser-Hay coupling. ACS Appl. Mater. Interfaces 2019, 11, 15670–15679.

    Article  CAS  Google Scholar 

  43. Xu, H.; Wu, K. Y.; Tian, J.; Zhu, L.; Yao, X. Q. Recyclable Cu/C3N4 composite catalysed homo- and cross-coupling of terminal alkynes under mild conditions. Green Chem. 2011, 20, 793–797.

    Article  Google Scholar 

  44. Sheldon, R. A.; Downing, R. S. Heterogeneous catalytic transformations for environmentally friendly production. Appl. Catal. A: Gen. 1999, 189, 163–183.

    Article  CAS  Google Scholar 

  45. Li, H. X.; Liu, L. Short-term effects of polyethene and polypropylene microplastics on soil phosphorus and nitrogen availability. Chemosphere 2022, 291, 132984.

    Article  CAS  Google Scholar 

  46. Shen, H.; Wu, W.; Wang, Z. Y.; Wu, W. Z.; Yuan, Y.; Feng, Y. L. Effect of modified layered double hydroxide on the flammability of intumescent flame retardant PP nanocomposites. J. Appl. Polym. Sci. 2021, 138, 51187.

    Article  CAS  Google Scholar 

  47. Zhan, J.; Huang, H. G.; Yu, H. Y.; Zhang, X. Z.; Zheng, Z. C.; Wang, Y. D.; Liu, T.; Li, T. X. The combined effects of Cd and Pb enhanced metal binding by root cell walls of the phytostabilizer Athyrium wardii (Hook.). Environ. Pollut. 2020, 258, 113663.

    Article  CAS  Google Scholar 

  48. Zhu, J. Y.; Hu, J. H.; Hu, Q.; Zhang, X. Y.; Ushakova, E. V.; Liu, K. K.; Wang, S. X.; Chen, X.; Shan, C. X.; Rogach, A. L. et al. White light afterglow in carbon dots achieved via synergy between the room-temperature phosphorescence and the delayed fluorescence. Small, in press, https://doi.org/10.1002/smll.202105415.

  49. Wang, B. L.; Jin, C. X.; Shao, S. J.; Yue, Y. X.; Zhang, Y. T.; Wang, S. S.; Chang, R. Q.; Zhang, H. F.; Zhao, J.; Li, X. N. Electron-deficient Cu site catalyzed acetylene hydrochlorination. Green Energy Environ. 2022, 18, 2105415.

    Google Scholar 

  50. Di, J. Q.; Zhang, M.; Chen, Y. X.; Wang, J. X.; Geng, S. S.; Tang, J. Q.; Zhang, Z. H. Copper anchored on phosphorus g-C3N4 as a highly efficient photocatalyst for the synthesis of N-arylpyridin-2-amines. Green Chem. 2021, 23, 1041–1049.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the “Key Program for International S&T Cooperation Projects of China” (No. 2017YFE0124300), Anhui Provincial Natural Science Foundation of China (No. 2008085M47), and Key Projects of the Department of Education of Anhui Province of China (No. RZ2000003450). The authors thank the beamline BL14W1 at Shanghai Synchrotron Radiation Facility (SSRF).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Chen, Peixin Cui or Qingping Ke.

Electronic Supplementary Material

12274_2022_4323_MOESM1_ESM.pdf

Revealing efficient catalytic performance of N-CuOx for aerobic oxidative coupling of aliphatic alkynes: A Langmuir—Hinshelwood reaction mechanism

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, J., Jiao, B., Chen, W. et al. Revealing efficient catalytic performance of N-CuOx for aerobic oxidative coupling of aliphatic alkynes: A Langmuir—Hinshelwood reaction mechanism. Nano Res. 15, 6076–6083 (2022). https://doi.org/10.1007/s12274-022-4323-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4323-5

Keywords

Navigation