Skip to main content
Log in

A study of plasmon-driven catalytic 4-NBT to DMAB in the dry film by using spatial Raman mapping spectroscopy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Plasmon-driven catalytic reaction (PDCR) as a part of photocatalysis has attracted immense attention. Due to the collective oscillation of free electrons at the surface of metallic nanostructures, the charge distributions store energy from the incident light that could transfer energy to molecules that promote photocatalysis. As an environment-friendly and green photocatalysis process, PDCR illustrates a brilliant future. In this study, the PDCR efficiency of photo-reducing 4-nitro-benzenthiol (4-NBT) dry film to p,p′-dimercaptoazobenzene (DMAB) in ambient conditions has been studied by using Ag nanodiscs (NDs) and Ag nanoparticles (NPs) as catalysts. The distribution of catalytic efficiency of 4-NBT to DMAB using an individual Ag ND catalyst has been illustrated using spatial Raman mapping. The result is direct evidence that the PDCR efficiency has a positive correlation with plasmon-induced electromagnetic field intensity. Additionally, time-dependent surface-enhanced Raman scattering (SERS) experiments reveal that the PDCR of 4-NBT to DMAB is reciprocal. The discovery in this research will aid to improve the PDCR performance and modulate the catalysis reaction for a high reduction of 4-NBT in industrial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jang, Y. H.; Jang, Y. J.; Kim, S.; Quan, L. N.; Chung, K.; Kim, D. H. Plasmonic solar cells: From rational design to mechanism overview. Chem. Rev. 2016, 116, 14982–15034.

    Article  CAS  Google Scholar 

  2. Zhang, Y. C.; He, S.; Guo, W. X.; Hu, Y.; Huang, J. W.; Mulcahy, J. R.; Wei, W. D. Surface-plasmon-driven hot electron photochemistry. Chem. Rev. 2017, 118, 2927–2954.

    Article  Google Scholar 

  3. Weng, L.; Zhang, H.; Govorov, A. O.; Ouyang, M. Hierarchical synthesis of non-centrosymmetric hybrid nanostructures and enabled plasmon-driven photocatalysis. Nat. Commun. 2014, 5, 4792.

    Article  CAS  Google Scholar 

  4. Zhai, Y. M.; DuChene, J. S.; Wang, Y. C.; Qiu, J. J.; Johnston-Peck, A. C.; You, B.; Guo, W. X.; DiCiaccio, B.; Qian, K.; Zhao, E. W. et al. Polyvinylpyrrolidone-induced anisotropic growth of gold nanoprisms in plasmon-driven synthesis. Nat. Mater. 2016, 15, 889–895.

    Article  CAS  Google Scholar 

  5. Ding, Y.; Sun, Z. Q.; Gao, Y.; Zhang, S. T.; Yang, C. X.; Qian, Z. F.; Jin, L. L.; Zhang, J. J.; Zeng, C.; Mao, Z. W. et al. Plasmon-driven catalytic chemotherapy augments cancer immunotherapy through induction of immunogenic cell death and blockage of IDO pathway. Adv. Mater. 2021, 33, 2102188.

    Article  CAS  Google Scholar 

  6. Geonmonond, R. S.; Da Silva, A. G. M.; Rodrigues, T. S.; De Freitas, I. C.; Ando, R. A.; Alves, T. V.; Camargo, P. H. C. Addressing the effects of size-dependent absorption, scattering, and near-field enhancements in plasmonic catalysis. ChemCatChem 2018, 10, 3447–3452.

    Article  CAS  Google Scholar 

  7. Jin, Z. C.; Sugiyama, Y.; Zhang, C. Q.; Palui, G.; Xin, Y.; Du, L.; Wang, S. S.; Dridi, N.; Mattoussi, H. Rapid photoligation of gold nanocolloids with lipoic acid-based ligands. Chem. Mater. 2020, 32, 7469–7483.

    Article  CAS  Google Scholar 

  8. Kale, M. J.; Avanesian, T.; Christopher, P. Direct photocatalysis by plasmonic nanostructures. ACS Catal. 2014, 4, 116–128.

    Article  CAS  Google Scholar 

  9. Brongersma, M. L.; Halas, N. J.; Nordlander, P. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 2015, 10, 25–34.

    Article  CAS  Google Scholar 

  10. Yang, M. R.; Moroz, P.; Jin, Z. C.; Budkina, D. S.; Sundrani, N.; Porotnikov, D.; Cassidy, J.; Sugiyama, Y.; Tarnovsky, A. N.; Mattoussi, H. et al. Delayed photoluminescence in metal-conjugated fluorophores. J. Am. Chem. Soc. 2019, 141, 11286–11297.

    Article  CAS  Google Scholar 

  11. Liz-Marzán, L. M.; Murphy, C. J.; Wang, J. F. Nanoplasmonics. Chem. Soc. Rev. 2014, 43, 3820–3822.

    Article  Google Scholar 

  12. Liu, Y. S.; Luo, F. Spatial Raman mapping investigation of SERS performance related to localized surface plasmons. Nano Res. 2020, 13, 138–144.

    Article  Google Scholar 

  13. Liu, Y. S.; Feng, H. Y.; Luo, F. Quantitative analysis of the defects in CVD grown graphene by plasmon-enhanced Raman scattering. Carbon 2020, 161, 153–161.

    Article  CAS  Google Scholar 

  14. Liu, Y. S.; Luo, F. Large-scale highly ordered periodic Au nanodiscs/graphene and graphene/Au nanoholes plasmonic substrates for surface-enhanced Raman scattering. Nano Res. 2019, 12, 2788–2795.

    Article  CAS  Google Scholar 

  15. Kim, K.; Lee, Y. M.; Lee, H. B.; Park, Y.; Bae, T. Y.; Jung, Y. M.; Choi, C. H.; Shin, K. S. Visible laser-induced photoreduction of silver 4-nitrobenzenethiolate revealed by Raman scattering spectroscopy. J. Raman Spectrosc. 2010, 41, 187–192.

    CAS  Google Scholar 

  16. Kim, K.; Lee, I.; Lee, S. J. Photolytic reduction of 4-nitrobenzenethiol on Au mediated via Ag nanoparticles. Chem. Phys. Lett. 2003, 377, 201–204.

    Article  CAS  Google Scholar 

  17. Ren, X. Q.; Tan, E. Z.; Lang, X. F.; You, T. T.; Jiang, L.; Zhang, H. Y.; Yin, P. G.; Guo, L. Observing reduction of 4-nitrobenzenthiol on gold nanoparticles in situ using surface-enhanced Raman spectroscopy. Phys. Chem. Chem. Phys. 2013, 15, 14196–14201.

    Article  CAS  Google Scholar 

  18. Alam, K. M.; Kumar, P.; Manuel, A. P.; Vahidzadeh, E.; Goswami, A.; Zeng, S.; Wu, W. J.; Mahdi, N.; Cui, K.; Kobryn, A. E. et al. CVD grown nitrogen doped graphene is an exceptional visible-light driven photocatalyst for surface catalytic reactions. 2D Mater. 2019, 7, 015002.

    Article  Google Scholar 

  19. Kang, L. L.; Xu, P.; Zhang, B.; Tsai, H.; Han, X. J.; Wang, H. L. Laser wavelength-and power-dependent plasmon-driven chemical reactions monitored using single particle surface enhanced Raman spectroscopy. Chem. Commun. 2013, 49, 3389–3391.

    Article  CAS  Google Scholar 

  20. Keller, E. L.; Frontiera, R. R. Ultrafast nanoscale Raman thermometry proves heating is not a primary mechanism for plasmon-driven photocatalysis. ACS Nano 2018, 12, 5848–5855.

    Article  CAS  Google Scholar 

  21. Golubev, A. A.; Khlebtsov, B. N.; Rodriguez, R. D.; Chen, Y.; Zahn, D. R. T. Plasmonic heating plays a dominant role in the plasmon-induced photocatalytic reduction of 4-nitrobenzenethiol. J. Phys. Chem. C 2018, 122, 5657–5663.

    Article  CAS  Google Scholar 

  22. Liang, X.; You, T. T.; Liu, D. P.; Lang, X. F.; Tan, E. Z.; Shi, J. H.; Yin, P. G.; Guo, L. Direct observation of enhanced plasmon-driven catalytic reaction activity of Au nanoparticles supported on reduced graphene oxides by SERS. Phys. Chem. Chem. Phys. 2015, 17, 10176–10181.

    Article  CAS  Google Scholar 

  23. Yang, X. Z.; Yu, H.; Guo, X.; Ding, Q. Q.; Pullerits, T.; Wang, R. M.; Zhang, G. Y.; Liang, W. J.; Sun, M. T. Plasmon-exciton coupling of monolayer MoS2-Ag nanoparticles hybrids for surface catalytic reaction. Mater. Today Energy 2017, 5, 72–78.

    Article  Google Scholar 

  24. Li, Z.; Gao, Y. N.; Zhang, L. S.; Fang, Y.; Wang, P. J. Polarization-dependent surface plasmon-driven catalytic reaction on a single nanowire monitored by SERS. Nanoscale 2018, 10, 18720–18727.

    Article  CAS  Google Scholar 

  25. Park, W. H.; Kim, Z. H. Charge transfer enhancement in the SERS of a single molecule. Nano Lett. 2010, 10, 4040–4048.

    Article  CAS  Google Scholar 

  26. Van Schrojenstein Lantman, E. M.; Deckert-Gaudig, T.; Mank, A. J. G.; Deckert, V.; Weckhuysen, B. M. Catalytic processes monitored at the nanoscale with tip-enhanced Raman spectroscopy. Nat. Nanotechnol. 2012, 7, 583–586.

    Article  CAS  Google Scholar 

  27. Zhong, H.; Chen, J.; Chen, J. F.; Tao, R.; Jiang, J. L.; Hu, Y.; Xu, J. S.; Zhang, T. Z.; Liao, J. S. Plasmon catalytic PATP coupling reaction on Ag-NPs/graphite studied via in situ electrochemical surface-enhanced Raman spectroscopy. Phys. Chem. Chem. Phys. 2020, 22, 23482–23490.

    Article  CAS  Google Scholar 

  28. Vidal-Iglesias, F. J.; Solla-Gullón, J.; Orts, J. M.; Rodes, A.; Pérez, J. M. Spectroelectrochemical study of the photoinduced catalytic formation of 4,4′-dimercaptoazobenzene from 4-aminobenzenethiol adsorbed on nanostructured copper. J. Phys. Chem. C 2015, 119, 12312–12324.

    Article  CAS  Google Scholar 

  29. Dong, B.; Fang, Y. R.; Chen, X. W.; Xu, H. X.; Sun, M. T. Substrate-, wavelength-, and time-dependent plasmon-assisted surface catalysis reaction of 4-nitrobenzenethiol dimerizing to p,p’-dimercaptoazobenzene on Au, Ag, and Cu films. Langmuir 2011, 27, 10677–10682.

    Article  CAS  Google Scholar 

  30. Almohammed, S.; Barwich, S. T.; Mitchell, A. K.; Rodriguez, B. J.; Rice, J. H. Enhanced photocatalysis and biomolecular sensing with field-activated nanotube-nanoparticle templates. Nat. Commun. 2019, 10, 2496.

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Guangxi Natural Science Foundation Project (No. 2021GXNSFBA196049), Guangxi Science and Technology Project (No. AD22035215), and the National Natural Science Foundation of China (No. 61761009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yansheng Liu, Feng Luo or Guofu Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Deng, J., Jin, Z. et al. A study of plasmon-driven catalytic 4-NBT to DMAB in the dry film by using spatial Raman mapping spectroscopy. Nano Res. 15, 6062–6066 (2022). https://doi.org/10.1007/s12274-022-4310-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4310-x

Keywords

Navigation