Skip to main content
Log in

Carbon-supported high-entropy Co-Zn-Cd-Cu-Mn sulfide nanoarrays promise high-performance overall water splitting

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Transition metal sulfides with homogeneous multi-metallic elements promise high catalytic performance for water electrolysis owing to the unique structure and highly tailorable electrochemical property. Most existing synthetic routes require high temperature to ensure the uniform mixing of various elements, making the synthesis highly challenging. Here, for the first-time novel carbon fiber supported high-entropy Co-Zn-Cd-Cu-Mn sulfide (CoZnCdCuMnS@CF) nanoarrays are fabricated by the mild cation exchange strategy. Benefiting from the synergistic effect among multiple metals and the strong interfacial bonding between high-entropy Co-Zn-Cd-Cu-Mn sulfide nanoarrays and the carbon fiber support, CoZnCdCuMnS@CF exhibits superior catalytic activity and stability toward overall water splitting in alkaline medium. Impressively, CoZnCdCuMnS@CF only needs low overpotentials of 173 and 220 mV to reach the current density of 10 mA·cm−2, with excellent durability for over 70 and 113 h for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) respectively. More importantly, the bifunctional electrode (CoZnCdCuMnS@CF∥CoZnCdCuMnS@CF) for overall water splitting can deliver a small cell voltage of 1.63 V to afford 10 mA·cm−2 and exhibit outstanding stability of negligible decay after 73 h continuous operation. This work provides a viable synthesis route toward advanced high-entropy materials with great potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, 146.

    Article  Google Scholar 

  2. Yang, L.; Liu, R. M.; Jiao, L. F. Electronic redistribution: Construction and modulation of interface engineering on CoP for enhancing overall water splitting. Adv. Funct. Mater. 2020, 30, 1909618.

    Article  CAS  Google Scholar 

  3. Yan, H. J.; Xie, Y.; Wu, A. P.; Cai, Z. C.; Wang, L.; Tian, C. G.; Zhang, X. M.; Fu, H. G. Anion-modulated HER and OER activities of 3D Ni-V-based interstitial compound heterojunctions for high-efficiency and stable overall water splitting. Adv. Mater. 2019, 31, 1901174.

    Article  Google Scholar 

  4. Ma, S. F.; Huang, J.; Zhang, C.; Chen, G. L.; Chen, W.; Shao, T.; Li, T. T.; Zhang, X. H.; Gong, T.; Ostrikov, K. K. One-step in-situ sprouting high-performance NiCoSxSey bifunctional catalysts for water electrolysis at low cell voltages and high current densities. Chem. Eng. J. 2022, 435, 134859.

    Article  CAS  Google Scholar 

  5. Liu, H. T.; Guan, J. Y.; Yang, S. X.; Yu, Y. H.; Shao, R.; Zhang, Z. P.; Dou, M. L.; Wang, F.; Xu, Q. Metal-organic-framework-derived Co2P nanoparticle/multi-doped porous carbon as a trifunctional electrocatalyst. Adv. Mater. 2020, 32, e2003649.

    Article  Google Scholar 

  6. Yang, Y.; Yao, H. Q.; Yu, Z. H.; Islam, S. M.; He, H. Y.; Yuan, M. W.; Yue, Y. H.; Xu, K.; Hao, W. C.; Sun, G. B. et al. Hierarchical nanoassembly of MoS2/Co9S8/Ni3S2/Ni as a highly efficient electrocatalyst for overall water splitting in a wide pH range. J. Am. Chem. Soc. 2019, 141, 10417–10430.

    Article  CAS  Google Scholar 

  7. Zhang, B.; Shan, J. W.; Wang, W. L.; Tsiakaras, P.; Li, Y. Y. Oxygen vacancy and core -shell heterojunction engineering of anemone-like CoP@CoOOH bifunctional electrocatalyst for efficient overall water splitting. Small, in press, https://doi.org/10.1002/smll.202106012.

  8. Wang, Z. Y.; Yang, J.; Wang, W. Y.; Zhou, F. Y.; Zhou, H.; Xue, Z. G.; Xiong, C.; Yu, Z. Q.; Wu, Y. Hollow cobalt-nickel phosphide nanocages for efficient electrochemical overall water splitting. Sci. China Mater. 2020, 64, 861–869.

    Article  Google Scholar 

  9. Liu, G. L.; Robertson, A. W.; Li, M. M. J.; Kuo, W. C. H.; Darby, M. T.; Muhieddine, M. H.; Lin, Y. C.; Suenaga, K.; Stamatakis, M.; Warner, J. H. et al. MoS2 monolayer catalyst doped with isolated Co atoms for the hydrodeoxygenation reaction. Nat. Chem. 2017, 9, 810–81

    Article  CAS  Google Scholar 

  10. Cai, P. W.; Huang, J. H.; Chen, J. X.; Wen, Z. H. Oxygen-containing amorphous cobalt sulfide porous nanocubes as high-activity electrocatalysts for the oxygen evolution reaction in an alkaline/neutral medium. Angew. Chem., Int. Ed. 2017, 66, 4858–4861.

    Article  Google Scholar 

  11. Han, H.; Kim, K. M.; Choi, H.; Ali, G.; Chung, K. Y.; Hong, Y. R.; Choi, J.; Kwon, J.; Lee, S. W.; Lee, J. W. et al. Parallelized reaction pathway and stronger internal band bending by partial oxidation of metal sulfide-graphene composites: Important factors of synergistic oxygen evolution reaction enhancement. ACS Catal. 0018, 8, 4091–4102.

    Article  Google Scholar 

  12. Li, X. Y.; Li, K. K.; Zhu, S. C.; Fan, K.; Lyu, L. L.; Yao, H. M.; Li, Y. Y.; Hu, J. L.; Huang, H. T.; Mai, Y. W.; Goodenough, J. B. Fiberin-tube design of Co9S8-carbon/Co9S8: Enabling efficient sodium storage. Angew. Chem., Int. Ed. 2019, 58, 6239–6243.

    Article  CAS  Google Scholar 

  13. Yang, D.; Cao, L. Y.; Feng, L. L.; Huang, J. F.; Kajiyoshi, K.; Feng, Y. Q.; Liu, Q. Q.; Li, W. B.; Feng, L.; Hai, G. J. Formation of hierarchical Ni3S2 nanohorn arrays driven by in-situ generation of VS4 nanocrystals for boosting alkaline water splitting. Appl. Catal. B-Environ. 2019, 257, 117911.

    Article  CAS  Google Scholar 

  14. Liu, Y. K.; Jiang, S.; Li, S. J.; Zhou, L.; Li, Z. H.; Li, J. M.; Shao, M. F. Interface engineering of (Ni, Fe)S2@MoS2 heterostructures for synergetic electrochemical water splitting. Appl. Catal. B-Environ. 2019, 247, 107–114.

    Article  CAS  Google Scholar 

  15. Li, Y. Z.; Cao, R.; Li, L. B.; Tang, X. N.; Chu, T. L.; Huang, B. Y.; Yuan, K.; Chen, Y. W. Simultaneously integrating single atomic cobalt sites and Co9S8 Nanoparticles into hollow carbon nanotubes as trifunctional electrocatalysts for Zn-air batteries to drive water splitting. Small 2020, 16, e1906735.

    Article  Google Scholar 

  16. Cui, M. J.; Yang, C. P.; Li, B. Y.; Dong, Q.; Wu, M. L.; Hwang, S.; Xie, H.; Wang, X. Z.; Wang, G. F.; Hu, L. B. High — entropy metal sulfide nanoparticles promise high — performance oxygen evolution reaction. Adv. Energy Mater. 2021, 11, 2002887.

    Article  CAS  Google Scholar 

  17. Zhao, X.; Shang, X.; Quan, Y.; Dong, B.; Han, G. Q.; Li, X.; Liu, Y. R.; Chen, Q.; Chai, Y. M.; Liu, C. G. Electrodeposition-solvothermal access to ternary mixed metal Ni-Co-Fe sulfides for highly efficient electrocatalytic water oxidation in alkaline media. Electrochim. Acta 2017, 230, 151–159.

    Article  CAS  Google Scholar 

  18. Cui, Z. M.; Chen, H.; Zhao, M. T.; DiSalvo, F. J. High-performance Pd3Pb intermetallic catalyst for electrochemical oxygen reduction. Nano Lett. 2016, 16, 2560–2566.

    Article  CAS  Google Scholar 

  19. Nguyen, T. X.; Su, Y. H.; Lin, C. C.; Ting, J. M. Self-reconstruction of sulfate-containing high entropy sulfide for exceptionally high-performance oxygen evolution reaction electrocatalyst. Adv. Funct. Mater. 2021, 31, 2106229.

    Article  CAS  Google Scholar 

  20. Liu, M. M.; Zhang, Z. H.; Okejiri, F.; Yang, S. Z.; Zhou, S. H.; Dai, S. Entropy-maximized synthesis of multimetallic nanoparticle catalysts via a ultrasonication-assisted wet chemistry method under ambient conditions. Adv. Mater. Interfaces 2019, 6, 1900015.

    Article  CAS  Google Scholar 

  21. Du, X. C.; Huang, J. W.; Zhang, J. J.; Yan, Y. C.; Wu, C. Y.; Hu, Y.; Yan, C. Y.; Lei, T. Y.; Chen, W.; Fan, C. et al. Modulating electronic structures of inorganic nanomaterials for efficient electrocatalytic water splitting. Angew. Chem., Int. Ed. 2019, 58, 4484–4502.

    Article  CAS  Google Scholar 

  22. Oses, C.; Toher, C.; Curtarolo, S. High-entropy ceramics. Nat. Rev. Mater. 2020, 5, 295–309.

    Article  CAS  Google Scholar 

  23. Li, T. Y.; Yao, Y. G.; Ko, B. H.; Huang, Z. N.; Dong, Q.; Gao, J. L.; Chen, W.; Li, J. G.; Li, S. K.; Wang, X. Z. et al. Carbon — supported high — entropy oxide nanoparticles as stable electrocatalysts for oxygen reduction reactions. Adv. Funct. Mater. 2021, 31, 2010561.

    Article  CAS  Google Scholar 

  24. Fenton, J. L.; Schaak, R. E. Structure-selective cation exchange in the synthesis of zincblende MnS and CoS nanocrystals. Angew. Chem., Int. Ed. 2017, 56, 6464–6467.

    Article  CAS  Google Scholar 

  25. Liu, Y.; Lim, C. K.; Fu, Z.; Yin, D. Q.; Swihart, M. T. Can the morphology of biconcave metal sulfide nanoplatelets be preserved during cation exchange. Chem. Mater. 2019, 31, 5706–5712.

    Article  CAS  Google Scholar 

  26. Li, X. Y.; Iqbal, M. A.; Xu, M.; Wang, Y. C.; Wang, H. Z.; Ji, M. W.; Wan, X. D.; Slater, T. J. A.; Liu, J.; Liu, J. J. et al. Au@HgxCd1−xTe core@shell nanorods by sequential aqueous cation exchange for near-infrared photodetectors. Nano Energy 2019, 57, 57–65.

    Article  CAS  Google Scholar 

  27. Yan, J. G.; Chen, L. G.; Liang, X. Co9S8 nanowires@NiCo LDH nanosheets arrays on nickel foams towards efficient overall water splitting. Sci. Bull. 2019, 64, 158–165.

    Article  CAS  Google Scholar 

  28. Jin, Y.; Chumanov, G. Synthesis of nonstoichiometric Cu2ZnSnS4 from ZnS by cation exchange. Eur. J. Inorg. Chem. 2017, 2017, 3761–3766.

    Article  CAS  Google Scholar 

  29. Li, X. Y.; Ji, M. W.; Li, H. B.; Wang, H. Z.; Xu, M.; Rong, H. P.; Wei, J.; Liu, J.; Liu, J. J.; Chen, W. X. et al. Cation/anion exchange reactions toward the syntheses of upgraded nanostructures: Principles and applications. Matter 2020, 2, 554–586.

    Article  CAS  Google Scholar 

  30. Jia, H. N.; Wang, Z. Y.; Zheng, X. H.; Lin, J. H.; Liang, H. Y.; Cai, Y. F.; Qi, J. L.; Cao, J.; Feng, J. C.; Fei, W. D. Interlaced Ni-Co LDH nanosheets wrapped Co9S8 nanotube with hierarchical structure toward high performance supercapacitors. Chem. Eng. J. 2018, 351, 348–355.

    Article  CAS  Google Scholar 

  31. Wang, S. B.; Guan, B. Y.; Wang, X.; Lou, X. W. D. Formation of hierarchical Co9S8@ZnIn2S4 heterostructured cages as an efficient photocatalyst for hydrogen evolution. J. Am. Chem. Soc. 2018, 140, 15145–15148.

    Article  CAS  Google Scholar 

  32. Liu, Q.; Hong, X. D.; Zhang, X.; Wang, W.; Guo, W. X.; Liu, X. Y.; Ye, M. D. Hierarchically structured Co9S8@NiCo2O4 nanobrushes for high-performance flexible asymmetric supercapacitors. Chem. Eng. J. 2019, 356, 985–993.

    Article  CAS  Google Scholar 

  33. Li, W. Q.; Li, Y. H.; Fu, H. Q.; Yang, G. X.; Zhang, Q.; Chen, S. Z.; Peng, F. Phosphorus doped Co9S8@CS as an excellent air-electrode catalyst for zinc-air batteries. Chem. Eng. J. 2020, 381, 122683.

    Article  CAS  Google Scholar 

  34. Deng, S. J.; Zhong, Y.; Zeng, Y. X.; Wang, Y. D.; Wang, X. L.; Lu, X. H.; Xia, X. H.; Tu, J. P. Hollow TiO2@Co9S8 core-branch arrays as bifunctional electrocatalysts for efficient oxygen/hydrogen production. Adv. Sci. 2018, 5, 1700772.

    Article  Google Scholar 

  35. Wang, S. Z.; Zhao, H. P.; Lv, S. Y.; Jiang, H. H.; Shao, Y. L.; Wu, Y. Z.; Hao, X. P.; Lei, Y. Insight into nickel-cobalt oxysulfide nanowires as advanced anode for sodium — ion capacitors. Adv. Energy Mater. 2021, 11, 2100408.

    Article  CAS  Google Scholar 

  36. Kim, M.; Anjum, M. A. R.; Choi, M.; Jeong, H. Y.; Choi, S. H.; Park, N.; Lee, J. S. Covalent 0D-2D heterostructuring of Co9S8-MoS2 for enhanced hydrogen evolution in all pH electrolytes. Adv. Funct. Mater. 2020, 30, 2002536.

    Article  CAS  Google Scholar 

  37. Shang, H. S.; Zhou, X. Y.; Dong, J. C.; Li, A.; Zhao, X.; Liu, Q. H.; Lin, Y.; Pei, J. J.; Li, Z.; Jiang, Z. L. et al. Engineering unsymmetrically coordinated Cu-S1N3 single atom sites with enhanced oxygen reduction activity. Nat. Commun. 2020, 11, 3049.

    Article  CAS  Google Scholar 

  38. Zhou, X. P.; Yin, L. X.; Dai, K. Q.; Gao, X. Y.; Feng, Y. N.; Zhao, Y. F.; Zhang, B. Preparation of Ni2P on twinned Zn0.5Cd0.5S nanocrystals for high-efficient photocatalytic hydrogen production. J. Chem. Sci. 2020, 132, 26.

    Article  CAS  Google Scholar 

  39. Rameshbabu, R.; Ravi, P.; Sathish, M. Cauliflower-like CuS/ZnS nanocomposites decorated g-C3N4 nanosheets as noble metal-free photocatalyst for superior photocatalytic water splitting. Chem. Eng. J. 2019, 360, 1277–1286.

    Article  CAS  Google Scholar 

  40. Fang, X. Y.; Cui, L. F.; Pu, T. T.; Song, J. L.; Zhang, X. D. Core-shell CdS@MnS nanorods as highly efficient photocatalysts for visible light driven hydrogen evolution. Appl. Surf. Sci. 2018, 457, 863–869.

    Article  CAS  Google Scholar 

  41. Vaizoǧullar, A. İ. An effective photocatalytic and photoelectrochemical performance of β/γ-MnS/CdS composite photocatalyst for degradation of flumequine and oxytetracycline antibiotics under visible light irradiation. J. Mater. Sci. 2019, 55, 4005–4016.

    Article  Google Scholar 

  42. Zhan, C. H.; Xu, Y.; Bu, L. Z.; Zhu, H. Z.; Feng, Y. G.; Yang, T.; Zhang, Y.; Yang, Z. Q.; Huang, B. L.; Shao, Q. et al. Subnanometer high-entropy alloy nanowires enable remarkable hydrogen oxidation catalysis. Nat. Commun. 2021, 12, 6261.

    Article  CAS  Google Scholar 

  43. Zhang, L. L.; Lei, Y. T.; Zhou, D. N.; Xiong, C. L.; Jiang, Z. L.; Li, X. Y.; Shang, H. S.; Zhao, Y. F.; Chen, W. X.; Zhang, B. Interfacial engineering of 3D hollow CoSe2@ultrathin MoSe2 core@shell heterostructure for efficient pH-universal hydrogen evolution reaction. Nano Res., in press, https://doi.org/10.1007/s12274-02-3887-9.

  44. Yu, J. Y.; Wang, A. Z.; Yu, W. Q.; Liu, X. Y.; Li, X.; Liu, H.; Hu, Y. Y.; Wu, Y. E.; Zhou, W. J. Tailoring the ruthenium reactive sites on N doped molybdenum carbide nanosheets via the anti-Ostwald ripening as efficient electrocatalyst for hydrogen evolution reaction in alkaline media. Appl. Catal. B-Environ. 2020, 277, 119236.

    Article  CAS  Google Scholar 

  45. Huang, S. C.; Meng, Y. Y.; Cao, Y. F.; Yao, F.; He, Z. J.; Wang, X. X.; Pan, H.; Wu, M. M. Amorphous NiWO4 nanoparticles boosting the alkaline hydrogen evolution performance of Ni3S2 electrocatalysts. Appl. Catal. B-Environ. 2020, 274, 119120.

    Article  CAS  Google Scholar 

  46. Dai, K. Q.; Zhang, N.; Zhang, L. L.; Yin, L. X.; Zhao, Y. F.; Zhang, B. Self-supported Co/CoO anchored on N-doped carbon composite as bifunctional electrocatalyst for efficient overall water splitting. Chem. Eng. J. 2021, 414, 128804.

    Article  CAS  Google Scholar 

  47. Jia, Z.; Yang, T.; Sun, L. G.; Zhao, Y. L.; Li, W. P.; Luan, J. H.; Lyu, F.; Zhang, L. C.; Kruzic, J. J.; Kai, J. J. et al. A novel multinary intermetallic as an active electrocatalyst for hydrogen evolution. Adv. Mater. 2020, 32, e2000385.

  48. Cao, C. S.; Ma, D. D.; Xu, Q.; Wu, X. T.; Zhu, Q. L. Semisacrificial template growth of self — supporting MOF nanocomposite electrode for efficient electrocatalytic water oxidation. Adv. Funct. Mater. 2018, 29, 1807418.

    Article  Google Scholar 

  49. Wang, D. L.; Li, H. P.; Du, N.; Hou, W. G. Single platinum atoms immobilized on monolayer tungsten trioxide nanosheets as an efficient electrocatalyst for hydrogen evolution reaction. Adv. Funct. Mater. 2021, 31, 2009770.

    Article  CAS  Google Scholar 

  50. Pang, Q. Q.; Niu, Z. L.; Yi, S. S.; Zhang, S.; Liu, Z. Y.; Yue, X. Z. Hydrogen-etched bifunctional sulfur-defect-rich ReS2/CC electrocatalyst for highly efficient HER and OER. Small 2020, 16, e2003007.

    Article  Google Scholar 

  51. Wan, J. W.; Zhao, Z. H.; Shang, H. S.; Peng, B.; Chen, W. X.; Pei, J. J.; Zheng, L. R.; Dong, J. C.; Cao, R.; Sarangi, R. et al. In situ phosphatizing of triphenylphosphine encapsulated within metal-organic frameworks to design atomic Co1-P1N3 interfacial structure for promoting catalytic performance. J. Am. Chem. Soc. 2020, 142, 8431–8439.

    Article  CAS  Google Scholar 

  52. Mao, J. J.; He, C. T.; Pei, J. J.; Chen, W. X.; He, D. S.; He, Y. Q.; Zhuang, Z. B.; Chen, C.; Peng, Q.; Wang, D. S. et al. Accelerating water dissociation kinetics by isolating cobalt atoms into ruthenium lattice. Nat. Commun. 2018, 9, 4958.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the National Natural Science Foundation of China (No. U1804140), and China Postdoctoral Science Foundation (No. 2021M702939) for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huishan Shang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, Y., Zhang, L., Xu, W. et al. Carbon-supported high-entropy Co-Zn-Cd-Cu-Mn sulfide nanoarrays promise high-performance overall water splitting. Nano Res. 15, 6054–6061 (2022). https://doi.org/10.1007/s12274-022-4304-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4304-8

Keywords

Navigation