Skip to main content
Log in

Enhancing photocatalytic hydrogen peroxide production of Ti-based metal–organic frameworks: The leading role of facet engineering

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Rational construction of the facet engineering over metal-organic frameworks is of significant interest for enhancing photocatalytic performance, yet the role of modulator except regulating facet is largely ignored. Herein, facet engineering of NH2-MIL125 (aMIL) was achieved through the facile one-pot method by controlling the concentration of acetic acid modulator. The probable domino effects induced with the detectable modulator were extensively investigated, evidencing the multi-position in one mode contained powder X-Ray diffraction (PXRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and X-ray absorption spectroscopy (XAS), etc. Meanwhile, correlation among the {111} facets engineering, the degree of structural defects, and the performance of photocatalytic hydrogen peroxide (H2O2) production was studied in detail, revealing that facet and defect engineering respectively play positive and relatively negative roles in the photocatalytic oxygen reduction reaction (ORR) with a volcano-type trend. aMIL-3 photocatalyst could deliver H2O2 production rate of 925.8 µmol·h−1·g−1 (2.03-fold of aMIL) under visible-light irradiation and a quantum yield of 1.08% at 420 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kofuji, Y.; Isobe, Y.; Shiraishi, Y.; Sakamoto, H.; Tanaka, S.; Ichikawa, S.; Hirai, T. Carbon nitride-aromatic diimide-graphene nanohybrids: Metal-free photocatalysts for solar-to-hydrogen peroxide energy conversion with 0.2% efficiency. J. Am. Chem. Soc. 2016, 138, 10019–10025.

    CAS  Google Scholar 

  2. Bryliakov, K. P. Catalytic asymmetric oxygenations with the environmentally benign oxidants H2O2 and O2. Chem. Rev. 2017, 117, 11406–11459.

    CAS  Google Scholar 

  3. Lu, Z. Y.; Chen, G. X.; Siahrostami, S.; Chen, Z. H.; Liu, K.; Xie, J.; Liao, L.; Wu, T.; Lin, D. C.; Liu, Y. Y. et al. High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. Nat. Catal. 2018, 1, 156–162.

    CAS  Google Scholar 

  4. Edwards, J. K.; Solsona, B.; Edwin, N. N.; Carley, A. F.; Herzing, A. A.; Kiely, C. J.; Hutchings, G. J. Switching off hydrogen peroxide hydrogenation in the direct synthesis process. Science 2009, 323, 1037–1041.

    CAS  Google Scholar 

  5. Hou, H. L.; Zeng, X. K.; Zhang, X. W. Production of hydrogen peroxide by photocatalytic processes. Angew. Chem., Int. Ed. 2020, 59, 17356–17376.

    CAS  Google Scholar 

  6. Teng, Z. Y.; Zhang, Q. T.; Yang, H. B.; Kato, K.; Yang, W. J.; Lu, Y. R.; Liu, S. X.; Wang, C. Y.; Yamakata, A.; Su, C. L. et al. Atomically dispersed antimony on carbon nitride for the artificial photosynthesis of hydrogen peroxide. Nat. Catal. 2021, 4, 374–384.

    CAS  Google Scholar 

  7. Yuan, L.; Zhang, C. Q.; Wang, J.; Liu, C.; Yu, C. Z. Mesoporous resin nanobowls with optimized donor-acceptor conjugation for highly efficient photocatalytic hydrogen peroxide production. Nano Res. 2021, 14, 3267–3273.

    CAS  Google Scholar 

  8. Shi, H. Y.; Li, Y.; Wang, X. F.; Yu, H. G.; Yu, J. G. Selective modification of ultra-thin g-C3N4 nanosheets on the (110) facet of Au/BiVO4 for boosting photocatalytic H2O2 production. Appl. Catal. B: Environ. 2021, 297, 120414.

    CAS  Google Scholar 

  9. Zhu, H. G.; Xue, Q.; Zhu, G. Y.; Liu, Y.; Dou, X. Y.; Yuan, X. Decorating Pt@cyclodextrin nanoclusters on C3N4/MXene for boosting the photocatalytic H2O2 Production. J. Mater. Chem. A 2021, 9, 6872–6880.

    CAS  Google Scholar 

  10. Chen, L.; Wang, L.; Wan, Y. Y.; Zhang, Y.; Qi, Z. M.; Wu, X. J.; Xu, H. X. Acetylene and diacetylene functionalized covalent triazine frameworks as metal-free photocatalysts for hydrogen peroxide production: A new two-electron water oxidation pathway. Adv. Mater. 2020, 32, 1904433.

    CAS  Google Scholar 

  11. He, T.; Kong, X. J.; Li, J. R. Chemically stable metal-organic frameworks: Rational construction and application expansion. Acc. Chem. Res. 2021, 54, 3083–3094.

    CAS  Google Scholar 

  12. Zeng, H.; Xie, M.; Wang, T.; Wei, R. J.; Xie, X. J.; Zhao, Y. F.; Lu, W. G.; Li, D. Orthogonal-array dynamic molecular sieving of propylene/propane mixtures. Nature 2021, 595, 542–548.

    CAS  Google Scholar 

  13. Hao, J. N.; Yan, B. Determination of urinary 1-hydroxypyrene for biomonitoring of human exposure to polycyclic aromatic hydrocarbons carcinogens by a lanthanide-functionalized metal-organic framework sensor. Adv. Funct. Mater. 2017, 27, 1603856.

    Google Scholar 

  14. Zhang, H. B.; Nai, J. W.; Yu, L.; Lou, X. W. Metal-organic-framework-based materials as platforms for renewable energy and environmental applications. Joule 2017, 1, 77–107.

    CAS  Google Scholar 

  15. Jiao, L.; Wang, Y.; Jiang, H. L.; Xu, Q. Metal-organic frameworks as platforms for catalytic applications. Adv. Mater. 2018, 30, 1703663.

    Google Scholar 

  16. Li, L.; Wang, X. S.; Liu, T. F.; Ye, J. H. Titanium-based MOF materials: From crystal engineering to photocatalysis. Small Methods 2020, 4, 2000486.

    CAS  Google Scholar 

  17. Huang, X. B.; Li, X. J.; Luan, Q. J.; Zhang, K. Y.; Wu, Z. Y.; Li, B. Z.; Xi, Z. S.; Dong, W. J.; Wang, G. Highly dispersed Pt clusters encapsulated in MIL-125-NH2 via in situ auto-reduction method for photocatalytic H2 production under visible light. Nano Res. 2021, 14, 4250–4257.

    CAS  Google Scholar 

  18. Hao, Y. C.; Chen, L. W.; Li, J. N.; Guo, Y.; Su, X.; Shu, M.; Zhang, Q. H.; Gao, W. Y.; Li, S. W.; Yu, Z. L. et al. Metal-organic framework membranes with single-atomic centers for photocatalytic CO2 and O2 reduction. Nat. Commun. 2021, 12, 2682.

    CAS  Google Scholar 

  19. Huang, H.; Wang, X. S.; Philo, D.; Ichihara, F.; Song, H.; Li, Y. X.; Li, D.; Qiu, T.; Wang, S. Y.; Ye, J. H. Toward visible-light-assisted photocatalytic nitrogen fixation: A titanium metal organic framework with functionalized ligands. Appl. Catal. B: Environ. 2020, 267, 118686.

    CAS  Google Scholar 

  20. Isaka, Y.; Kawase, Y.; Kuwahara, Y.; Mori, K.; Yamashita, H. Two-phase system utilizing hydrophobic metal-organic frameworks (MOFs) for photocatalytic synthesis of hydrogen peroxide. Angew. Chem., Int. Ed. 2019, 58, 5402–5406.

    CAS  Google Scholar 

  21. Chen, X. L.; Kuwahara, Y.; Mori, K.; Louis, C.; Yamashita, H. Introduction of a secondary ligand into titanium-based metal-organic frameworks for visible-light-driven photocatalytic hydrogen peroxide production from dioxygen reduction. J. Mater. Chem. A 2021, 9, 2815–2821.

    CAS  Google Scholar 

  22. Chen, X. L.; Kuwahara Y.; Mori, K.; Louis, C.; Yamashita, H. A hydrophobic titanium doped zirconium-based metal organic framework for photocatalytic hydrogen peroxide production in a two-phase system. J. Mater. Chem. A 2020, 8, 1904–1910.

    CAS  Google Scholar 

  23. Isaka, Y.; Kondo, Y.; Kawase, Y.; Kuwahara, Y.; Mori, K.; Yamashita, H. Photocatalytic production of hydrogen peroxide through selective two-electron reduction of dioxygen utilizing amine-functionalized MIL-125 deposited with nickel oxide nanoparticles. Chem. Commun. 2018, 54, 9270–9273.

    CAS  Google Scholar 

  24. Liao, X. Y.; Wei, W. J.; Zhou, Y. Q.; Zhang, M.; Cai, Y.; Liu, H. T.; Yao, Y.; Lu, S. X.; Hao, Q. L. A Ti-based bi-MOF for the tandem reaction of H2O2 generation and catalytic oxidative desulfurization. Catal. Sci. Technol. 2020, 10, 1015–1022.

    CAS  Google Scholar 

  25. Pan, J.; Liu, G.; Lu, G. Q.; Cheng, H. M. On the true photoreactivity order of {001}, {010}, and {101} facets of anatase TiO2 crystals. Angew. Chem., Int. Ed. 2011, 50, 2133–2137.

    CAS  Google Scholar 

  26. Hu, S.; Liu, M.; Li, K. Y.; Zuo, Y.; Zhang, A. F.; Song, C. S.; Zhang, G. L.; Guo, X. W. Solvothermal synthesis of NH2-MIL-125(Ti) from circular plate to octahedron. CrystEngComm 2014, 16, 9645–9650.

    CAS  Google Scholar 

  27. Cheng, X. M.; Dao, X. Y.; Wang, S. Q.; Zhao, J.; Sun, W. Y. Enhanced photocatalytic CO2 reduction activity over NH2-MIL-125(Ti) by facet regulation. ACS Catal. 2021, 11, 650–658.

    CAS  Google Scholar 

  28. Guo, F.; Guo, J. H.; Wang, P.; Kang, Y. S.; Liu, Y.; Zhao, J.; Sun, W. Y. Facet-dependent photocatalytic hydrogen production of metal-organic framework NH2-MIL-125(Ti). Chem. Sci. 2019, 10, 4834–4838.

    CAS  Google Scholar 

  29. Ma, X.; Wang, L.; Zhang, Q.; Jiang, H. L. Switching on the photocatalysis of metal-organic frameworks by engineering structural defects. Angew. Chem., Int. Ed. 2019, 58, 12175–12179.

    CAS  Google Scholar 

  30. Xu, M. L.; Li, D. D.; Sun, K.; Jiao, L.; Xie, C. F.; Ding, C. M.; Jiang, H. L. Interfacial microenvironment modulation boosting electron transfer between metal nanoparticles and MOFs for enhanced photocatalysis. Angew. Chem., Int. Ed. 2021, 60, 16372–16376.

    CAS  Google Scholar 

  31. Yang, W.; Wang, H. J.; Liu, R. R.; Wang, J. W.; Zhang, C.; Li, C.; Zhong, D. C.; Lu, T. B. Tailoring crystal facets of metal-organic layers to enhance photocatalytic activity for CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 409–414.

    CAS  Google Scholar 

  32. Quan, Z. W.; Wang, Y. X.; Fang, J. Y. High-index faceted noble metal nanocrystals. Acc. Chem. Res. 2013, 46, 191–202.

    CAS  Google Scholar 

  33. Valenzano, L.; Civalleri, B.; Chavan, S.; Bordiga, S.; Nilsen, M. H.; Jakobsen, S.; Lillerud, K. P.; Lamberti, C. Disclosing the complex structure of UiO-66 metal organic framework: A synergic combination of experiment and theory. Chem. Mater. 2011, 23, 1700–1718.

    CAS  Google Scholar 

  34. Fu, Y.; Kang, Z. Z.; Yin, J. L.; Cao, W. C.; Tu, Y. Q.; Wang, Q.; Kong, X. Q. Duet of acetate and water at the defects of metal-organic frameworks. Nano Lett. 2019, 19, 1618–1624.

    CAS  Google Scholar 

  35. Shearer, G. C.; Chavan, S.; Bordiga, S.; Svelle, S.; Olsbye, U.; Lillerud, K. P. Defect engineering: Tuning the porosity and composition of the metal-organic framework UiO-66 via modulated synthesis. Chem. Mater. 2016, 28, 3749–3761.

    CAS  Google Scholar 

  36. Ambroz, F.; Macdonald, T. J.; Martis, V.; Parkin, I. P. Evaluation of the BET theory for the characterization of meso and microporous MOFs. Small Methods 2018, 2, 1800173.

    Google Scholar 

  37. Liu, Y. W.; Liu, S. M.; He, D. F.; Li, N.; Ji, Y. J.; Zheng, Z. P.; Luo, F.; Liu, S. X.; Shi, Z.; Hu, C. W. Crystal facets make a profound difference in polyoxometalate-containing metal-organic frameworks as catalysts for biodiesel production. J. Am. Chem. Soc. 2015, 137, 12697–12703.

    CAS  Google Scholar 

  38. Synytska, A.; Kirillova, A.; Isa, L. Synthesis and contact angle measurements of Janus particles. ChemPlusChem 2014, 79, 656–661.

    CAS  Google Scholar 

  39. Samari, M.; Zinadini, S.; Zinatizadeh, A. A.; Jafarzadeh, M.; Gholami, F. Designing of a novel polyethersulfone (PES) ultrafiltration (UF) membrane with thermal stability and high fouling resistance using melamine-modified zirconium-based metal-organic framework (UiO-66-NH2/MOF). Sep. Purif. Technol. 2020, 251, 117010.

    CAS  Google Scholar 

  40. Ji, X. Y.; Lu, Q. F.; Guo, E. Y.; Li, D.; Yao, L. B.; Liu, H.; Li, X. L. Bamboo-shaped Zn2+-doped Li4Ti5O12 nanofibers: One-step controllable synthesis and high-performance lithium-ion batteries. J. Electrochem. Soc. 2018, 165, A534–A541.

    CAS  Google Scholar 

  41. Li, S. X.; Sun, S. L.; Wu, H. Z.; Wei, C. H.; Hu, Y. Effects of electron-donating groups on the photocatalytic reaction of MOFs. Catal. Sci. Technol. 2018, 8, 1696–1703.

    CAS  Google Scholar 

  42. Xu, C. Y.; Pan, Y. T.; Wan, G.; Liu, H.; Wang, L.; Zhou, H.; Yu, S. H.; Jiang, H. L. Turning on visible-light photocatalytic C-H oxidation over metal-organic frameworks by introducing metal-to-cluster charge transfer. J. Am. Chem. Soc. 2019, 141, 19110–19117.

    CAS  Google Scholar 

  43. Popeney, C.; Guan, Z. B. Ligand electronic effects on late transition metal polymerization catalysts. Organometallics 2005, 24, 1145–1155.

    CAS  Google Scholar 

  44. Tan, X. N.; Zhang, J. L.; Shi, J. B.; Cheng, X. Y.; Tan, D. X.; Zhang, B. X.; Liu, L. F.; Zhang, F. Y.; Han, B. X.; Zheng, L. R. Fabrication of NH2-MIL-125 nanocrystals for high performance photocatalytic oxidation. Sustain. Energy Fuels 2020, 4, 2823–2830.

    CAS  Google Scholar 

  45. Wang, D. N.; Liu, L. J.; Sun, X. L.; Sham, T. K. Observation of lithiation-induced structural variations in TiO2 nanotube arrays by X-ray absorption fine structure. J. Mater. Chem. A 2015, 3, 412–419.

    CAS  Google Scholar 

  46. Xu, W. J.; Zhang, T. J.; Bai, R. S.; Zhang, P.; Yu, J. H. A one-step rapid synthesis of TS-1 zeolites with highly catalytically active mononuclear TiO6 species. J. Mater. Chem. A 2020, 8, 9677–9683.

    CAS  Google Scholar 

  47. Pan, T.; Shen, Y.; Wu, P.; Gu, Z. D.; Zheng, B.; Wu, J. S.; Li, S.; Fu, Y.; Zhang, W. N.; Huo, F. W. Thermal shrinkage behavior of metal-organic frameworks. Adv. Funct. Mater. 2020, 30, 2001389.

    CAS  Google Scholar 

  48. Bariki, R.; Majhi, D.; Das, K.; Behera, A.; Mishra, B. G. Facile synthesis and photocatalytic efficacy of UiO-66/CdIn2S4 nanocomposites with flowerlike 3D-microspheres towards aqueous phase decontamination of triclosan and H2 evolution. Appl. Catal. B: Environ. 2020, 270, 118882.

    CAS  Google Scholar 

  49. Zhao, Y. J.; Liu, Y.; Wang, Z. Z.; Ma, Y. R.; Zhou, Y. J.; Shi, X. F.; Wu, Q. Y.; Wang, X.; Shao, M. W.; Huang, H. et al. Carbon nitride assisted 2D conductive metal-organic frameworks composite photocatalyst for efficient visible light-driven H2O2 production. Appl. Catal. B: Environ. 2021, 289, 120035.

    CAS  Google Scholar 

  50. Ge, L.; Han, C. C. Synthesis of MWNTs/g-C3N4 composite photocatalysts with efficient visible light photocatalytic hydrogen evolution activity. Appl. Catal. B: Environ 2012, 117–118, 268–274.

    Google Scholar 

  51. Zhao, Y. B.; Zhang, P.; Yang, Z. C.; Li, L. N.; Gao, J. Y.; Chen, S.; Xie, T. F.; Diao, C. Z.; Xi, S. B.; Xiao, B. B. et al. Mechanistic analysis of multiple processes controlling solar-driven H2O2 synthesis using engineered polymeric carbon nitride. Nat. Commun. 2021, 12, 3701.

    CAS  Google Scholar 

  52. Li, X. Y.; Pi, Y. H.; Hou, Q. Q.; Yu, H.; Li, Z.; Li, Y. W.; Xiao J. Amorphous TiO2@NH2-MIL-125(Ti) homologous MOF-encapsulated heterostructures with enhanced photocatalytic activity. Chem. Commun. 2018, 54, 1917–1920.

    CAS  Google Scholar 

  53. Tang, S. F.; Yin, X. P.; Wang, G. Y.; Lu, X. L.; Lu, T. B. Single titanium-oxide species implanted in 2D g-C3N4 matrix as a highly efficient visible-light CO2 reduction photocatalyst. Nano Res. 2019, 12, 457–462.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the 4B9A station of the Beijing Synchrotron Radiation Facility (BSRF) and the Analytical and Testing Center of Beijing Institute of Technology for the technical supports. This work was supported by the National Natural Science Foundation of China (Nos. 21971016, 92061106, and 22101021).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Meng Yu or Jun Tao.

Electronic Supplementary Material

12274_2022_4301_MOESM1_ESM.pdf

Enhancing photocatalytic hydrogen peroxide production of Ti-based metal–organic frameworks: The leading role of facet engineering

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, XY., Wang, YY., Li, Y. et al. Enhancing photocatalytic hydrogen peroxide production of Ti-based metal–organic frameworks: The leading role of facet engineering. Nano Res. 15, 6045–6053 (2022). https://doi.org/10.1007/s12274-022-4301-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4301-y

Keywords

Navigation