Skip to main content
Log in

Interface-rich Au-doped PdBi alloy nanochains as multifunctional oxygen reduction catalysts boost the power density and durability of a direct methanol fuel cell device

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The development of cathode oxygen reduction reaction (ORR) catalysts with high characteristics for practical, direct methanol fuel cells (DMFCs) has continuously increased the attention of researchers. In this work, interface-rich Au-doped PdBi (PdBiAu) branched one-dimensional (1D) alloyed nanochains assembled by sub-6.5 nm particles have been prepared, exhibiting an ORR mass activity (MA) of 6.40 A·mgPd−1 and long-term durability of 5,000 cycles in an alkaline medium. The MA of PdBiAu nanochains is 46 times and 80 times higher than that of commercial Pt/C (0.14 A·mgPt−1) and Pd/C (0.08 A·mgPd−1). The MA of binary PdBi nanochains also reaches 5.71 A·mgPd−1. Notably, the PdBiAu nanochains exhibit high in-situ carbon monoxide poisoning resistance and high methanol tolerance. In actual DMFC device tests, the PdBiAu nanochains enhance power density of 140.1 mW·cm−2 (in O2)/112.4 mW·cm−2 (in air) and durability compared with PdBi nanochains and Pt/C. The analysis of the structure—function relationship indicates that the enhanced performance of PdBiAu nanochains is attributed to integrated functions of surficial defect-rich 1D chain structure, improved charge transfer capability, downshift of the d-band center of Pd, as well as the synergistic effect derived from “Pd-Bi” and/or “Pd-Au” dual active sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Greeley, J.; Stephens, I. E. L.; Bondarenko, A. S.; Johansson, T. P.; Hansen, H. A.; Jaramillo, T. F.; Rossmeisl, J.; Chorkendorff, I.; Nørskov, J. K. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat. Chem. 2009, 1, 552–556.

    CAS  Google Scholar 

  2. Din, M. A. U.; Saleem, F.; Ni, B.; Yong, Y.; Wang, X. Porous tetrametallic PtCuBiMn nanosheets with a high catalytic activity and methanol tolerance limit for oxygen reduction reactions. Adv. Mater. 2017, 29, 1604994.

    Google Scholar 

  3. Wang, D. L.; Xin, H. L.; Hovden, R.; Wang, H. S.; Yu, Y. C.; Muller, D. A.; DiSalvo, F. J.; Abruña, H. D. Structurally ordered intermetallic platinum-cobalt core—shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nat. Mater. 2013, 12, 81–87.

    CAS  Google Scholar 

  4. Tang, T.; Ding, L.; Jiang, Z.; Hu, J. S.; Wan, L. J. Advanced transition metal/nitrogen/carbon-based electrocatalysts for fuel cell applications. Sci. China Chem. 2020, 63, 1517–1542.

    CAS  Google Scholar 

  5. Li, Y. J.; Zhang, H. C.; Han, N. N.; Kuang, Y.; Liu, J. F.; Liu, W.; Duan, H. H.; Sun, X. M. Janus electrode with simultaneous management on gas and liquid transport for boosting oxygen reduction reaction. Nano Res. 2019, 12, 177–182.

    CAS  Google Scholar 

  6. Che, Z. W.; Lu, X. Y.; Cai, B. F.; Xu, X. X.; Bao, J. C.; Liu, Y. Ligand-controlled synthesis of high density and ultra-small Ru nanoparticles with excellent electrocatalytic hydrogen evolution performance. Nano Res. 2022, 15, 1269–1275.

    CAS  Google Scholar 

  7. Chen, A. C.; Ostrom, C. Palladium-based nanomaterials: Synthesis and electrochemical applications. Chem. Rev. 2015, 115, 11999–12044.

    CAS  Google Scholar 

  8. Zhang, Z. D.; Zhou, M.; Chen, Y. J.; Liu, S. J.; Wang, H. F.; Zhang, J.; Ji, S. F.; Wang, D. S.; Li, Y. D. Pd single-atom monolithic catalyst: Functional 3D structure and unique chemical selectivity in hydrogenation reaction. Sci. China Mater. 2021, 64, 1919–1929.

    CAS  Google Scholar 

  9. Li, Y. L.; He, J. F.; Cheng, W. R.; Su, H.; Li, C. L.; Zhang, H.; Liu, M. H.; Zhou, W. L.; Chen, X.; Liu, Q. H. High mass-specific reactivity of a defect-enriched Ru electrocatalyst for hydrogen evolution in harsh alkaline and acidic media. Sci. China Mater. 2021, 64, 2467–2476.

    CAS  Google Scholar 

  10. Gao, F.; Zhang, Y. P.; You, H. M.; Li, Z. L.; Zou, B.; Du, Y. K. Solvent-mediated shell dimension reconstruction of core@shell PdAu@Pd nanocrystals for robust C1 and C2 alcohol electrocatalysis. Small 2021, 17, 2101428.

    CAS  Google Scholar 

  11. Yuan, X. L.; Zhang, Y.; Cao, M. H.; Zhou, T.; Jiang, X. J.; Chen, J. X.; Lyu, F. L.; Xu, Y.; Luo, J.; Zhang, Q. et al. Bi(OH)3/PdBi composite nanochains as highly active and durable electrocatalysts for ethanol oxidation. Nano Lett. 2019, 19, 4752–4759.

    CAS  Google Scholar 

  12. Zhang, Z. C.; Liu, G. G.; Cui, X. Y.; Gong, Y.; Yi, D.; Zhang, Q. H.; Zhu, C. Z.; Saleem, F.; Chen, B.; Lai, Z. C. et al. Evoking ordered vacancies in metallic nanostructures toward a vacated Barlow packing for high-performance hydrogen evolution. Sci. Adv. 2021, 7, eabd6647.

    CAS  Google Scholar 

  13. Wang, L.; Zeng, Z. H.; Gao, W. P.; Maxson, T.; Raciti, D.; Giroux, M.; Pan, X. Q.; Wang, C.; Greeley, J. Tunable intrinsic strain in two-dimensional transition metal electrocatalysts. Science 2019, 363, 870–874.

    CAS  Google Scholar 

  14. Jin, M. S.; Zhang, H.; Xie, Z. X.; Xia, Y. N. Palladium nanocrystals enclosed by {100} and {111} facets in controlled proportions and their catalytic activities for formic acid oxidation. Energy Environ. Sci. 2012, 5, 6352–6357.

    CAS  Google Scholar 

  15. Zhang, J.; Sasaki, K.; Sutter, E.; Adzic, R. R. Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters. Science 2007, 315, 220–222.

    CAS  Google Scholar 

  16. Li, C. Z.; Yuan, Q.; Ni, B.; He, T.; Zhang, S. M.; Long, Y.; Gu, L.; Wang, X. Dendritic defect-rich palladium-copper-cobalt nanoalloys as robust multifunctional non-platinum electrocatalysts for fuel cells. Nat. Commun. 2018, 9, 3702.

    Google Scholar 

  17. Shao, M. H.; Sasaki, K.; Adzic, R. R. Pd-Fe nanoparticles as electrocatalysts for oxygen reduction. J. Am. Chem. Soc. 2006, 128, 3526–3527.

    CAS  Google Scholar 

  18. Zhou, M.; Guo, J. N.; Zhao, B.; Li, C.; Zhang, L. H.; Fang, J. Y. Improvement of oxygen reduction performance in alkaline media by tuning phase structure of Pd-Bi nanocatalysts. J. Am. Chem. Soc. 2021, 143, 15891–15897.

    CAS  Google Scholar 

  19. Li, X.; Li, X. X.; Liu, C. X.; Huang, H. W.; Gao, P. F.; Ahmad, F.; Luo, L. H.; Ye, Y. F.; Geng, Z. G.; Wang, G. X. et al. Atomic-level construction of tensile-strained PdFe alloy surface toward highly efficient oxygen reduction electrocatalysis. Nano Lett. 2020, 20, 1403–1409.

    CAS  Google Scholar 

  20. Sun, D.; Wang, Y. F.; Livi, K. J. T.; Wang, C. H.; Luo, R. C.; Zhang, Z. Q.; Alghamdi, H.; Li, C. Y.; An, F. F.; Gaskey, B. et al. Ordered intermetallic Pd3Bi prepared by an electrochemically induced phase transformation for oxygen reduction electrocatalysis. ACS Nano 2019, 13, 10818–10825.

    CAS  Google Scholar 

  21. Luo, M. C.; Zhao, Z. L.; Zhang, Y. L.; Sun, Y. J.; Xing, Y.; Lv, F.; Yang, Y.; Zhang, X.; Hwang, S.; Qin, Y. N. et al. PdMo bimetallene for oxygen reduction catalysis. Nature 2019, 574, 81–85.

    CAS  Google Scholar 

  22. Sarkar, S.; Ramarao, S. D.; Das, T.; Das, R.; Vinod, C. P.; Chakraborty, S.; Peter, S. C. Unveiling the roles of lattice strain and descriptor species on Pt-like oxygen reduction activity in Pd-Bi catalysts. ACS Catal. 2021, 11, 800–808.

    CAS  Google Scholar 

  23. Qi, J.; Benipal, N.; Liang, C. H.; Li, W. Z. PdAg/CNT catalyzed alcohol oxidation reaction for high-performance anion exchange membrane direct alcohol fuel cell (alcohol = methanol, ethanol, ethylene glycol, and glycerol). Appl. Catal. B: Environ. 2016, 199, 494–503.

    CAS  Google Scholar 

  24. Hu, Q. Y.; Zhan, W.; Guo, Y. F.; Luo, L. M.; Zhang, R. H.; Chen, D.; Zhou, X. W. Heat treatment bimetallic PdAu nanocatalyst for oxygen reduction reaction. J. Energy Chem. 2020, 40, 217–223.

    Google Scholar 

  25. Mai, H. D.; Kim, S.; Yoo, H. Controllable growth of palladium on gold multipod nanoparticles and their enhanced electrochemical oxygen reduction reaction performances. J. Catal. 2020, 388, 20–29.

    Google Scholar 

  26. Liu, S. L.; Mu, X. Q.; Li, W. Q.; Lv, M.; Chen, B. Y.; Chen, C. Y.; Mu, S. C. Cation vacancy-modulated PtPdRuTe five-fold twinned nanomaterial for catalyzing hydrogen evolution reaction. Nano Energy 2019, 61, 346–351.

    CAS  Google Scholar 

  27. Wang, Y. R.; Hu, R. M.; Li, Y. C.; Wang, F. H.; Shang, J. X.; Shui, J. L. High-throughput screening of carbon-supported single metal atom catalysts for oxygen reduction reaction. Nano Res. 2022, 15, 1054–1060.

    CAS  Google Scholar 

  28. Lin, L. X.; Miao, N. H.; Wallace, G. G.; Chen, J.; Allwood, D. A. Engineering carbon materials for electrochemical oxygen reduction reactions. Adv. Energy Mater. 2021, 11, 2100695.

    CAS  Google Scholar 

  29. Chala, S. A.; Tsai, M. C.; Su, W. N.; Ibrahim, K. B.; Duma, A. D.; Yeh, M. H.; Wen, C. Y.; Yu, C. H.; Chan, T. S.; Dai, H. J. et al. Site activity and population engineering of NiRu-layered double hydroxide nanosheets decorated with silver nanoparticles for oxygen evolution and reduction reactions. ACS Catal. 2019, 9, 117–129.

    CAS  Google Scholar 

  30. Gao, Y.; Kong, D. B.; Liang, J. X.; Han, D. L.; Wang, B.; Yang, Q. H.; Zhi, L. J. Inside-out dual-doping effects on tubular catalysts: Structural and chemical variation for advanced oxygen reduction performance. Nano Res. 2022, 15, 361–367.

    CAS  Google Scholar 

  31. Zhao, F. L.; Zheng, L. R.; Yuan, Q.; Yang, X. T.; Zhang, Q. H.; Xu, H.; Guo, Y. L.; Yang, S.; Zhou, Z. Y.; Gu, L. et al. Ultrathin PdAuBiTe nanosheets as high-performance oxygen reduction catalysts for a direct methanol fuel cell device. Adv. Mater. 2021, 33, 2103383.

    CAS  Google Scholar 

  32. Li, J.; Yin, H. M.; Li, X. B.; Okunishi, E.; Shen, Y. L.; He, J.; Tang, Z. K.; Wang, W. X.; Yücelen, E.; Li, C. et al. Surface evolution of a Pt-Pd-Au electrocatalyst for stable oxygen reduction. Nat. Energy 2017, 2, 17111.

    CAS  Google Scholar 

  33. Choi, J.; Cho, J.; Roh, C. W.; Kim, B. S.; Choi, M. S.; Jeong, H.; Ham, H. C.; Lee, H. Au-doped PtCo/C catalyst preventing Co leaching for proton exchange membrane fuel cells. Appl. Catal. B: Environ. 2019, 247, 142–149.

    CAS  Google Scholar 

  34. Lu, B. A.; Sheng, T.; Tian, N.; Zhang, Z. C.; Xiao, C.; Cao, Z. M.; Ma, H. B.; Zhou, Z. Y.; Sun, S. G. Octahedral PtCu alloy nanocrystals with high performance for oxygen reduction reaction and their enhanced stability by trace Au. Nano Energy 2017, 33, 65–71.

    CAS  Google Scholar 

  35. Yang, X. T.; Yao, K. X.; Ye, J. Y.; Yuan, Q.; Zhao, F. L.; Li, Y. F.; Zhou, Z. Y. Interface-rich three-dimensional Au-doped PtBi intermetallics as highly effective anode catalysts for application in alkaline ethylene glycol fuel cells. Adv. Funct. Mater. 2021, 31, 2103671.

    CAS  Google Scholar 

  36. Wang, Y.; Zhuo, H. Y.; Sun, H.; Zhang, X.; Dai, X. P.; Luan, C. L.; Qin, C. L.; Zhao, H. H.; Li, J.; Wang, M. L. et al. Implanting Mo atoms into surface lattice of Pt3Mn alloys enclosed by high-indexed facets: Promoting highly active sites for ethylene glycol oxidation. ACS Catal. 2019, 9, 442–455.

    CAS  Google Scholar 

  37. Huang, X. Q.; Zhao, Z. P.; Cao, L.; Chen, Y.; Zhu, E. B.; Lin, Z. Y.; Li, M. F.; Yan, A. M.; Zettl, A.; Wang, Y. M. et al. Highperformance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction. Science 2015, 348, 1230–1234.

    CAS  Google Scholar 

  38. Huang, H. W.; Li, K.; Chen, Z.; Luo, L. H.; Gu, Y. Q.; Zhang, D. Y.; Ma, C.; Si, R.; Yang, J. L.; Peng, Z. M. et al. Achieving remarkable activity and durability toward oxygen reduction reaction based on ultrathin Rh-doped Pt nanowires. J. Am. Chem. Soc. 2017, 139, 8152–8159.

    CAS  Google Scholar 

  39. Beermann, V.; Gocyla, M.; Willinger, E.; Rudi, S.; Heggen, M.; Dunin-Borkowski, R. E.; Willinger, M. G.; Strasser, P. Rh-doped Pt-Ni octahedral nanoparticles: Understanding the correlation between elemental distribution, oxygen reduction reaction, and shape stability. Nano Lett. 2016, 16, 1719–1725.

    CAS  Google Scholar 

  40. Wang, Y.; Zheng, M.; Sun, H.; Zhang, X.; Luan, C. L.; Li, Y. R.; Zhao, L.; Zhao, H. H.; Dai, X. P.; Ye, J. Y. et al. Catalytic Ru containing Pt3Mn nanocrystals enclosed with high-indexed facets: Surface alloyed Ru makes Pt more active than Ru particles for ethylene glycol oxidation. Appl. Catal. B: Environ. 2019, 253, 11–20.

    CAS  Google Scholar 

  41. Shang, X.; Yan, K. L.; Lu, S. S.; Dong, B.; Gao, W. K.; Chi, J. Q.; Liu, Z. Z.; Chai, Y. M.; Liu, C. G. Controlling electrodeposited ultrathin amorphous Fe hydroxides film on V-doped nickel sulfide nanowires as efficient electrocatalyst for water oxidation. J. Power Sources 2017, 363, 44–53.

    CAS  Google Scholar 

  42. Javaid, S.; Xu, X. M.; Chen, W.; Chen, J. Y.; Hsu, H. Y.; Wang, S.; Yang, X. Y.; Li, Y. G.; Shao, Z. P.; Jones, F. et al. Ni2+/Co2+ doped Au-Fe7S8 nanoplatelets with exceptionally high oxygen evolution reaction activity. Nano Energy 2021, 89, 106463.

    CAS  Google Scholar 

  43. Polani, S.; MacArthur, K. E.; Klingenhof, M.; Wang, X. L.; Paciok, P.; Pan, L. J.; Feng, Q. C.; Kormányos, A.; Cherevko, S.; Heggen, M. et al. Size and composition dependence of oxygen reduction reaction catalytic activities of Mo-doped PtNi/C octahedral nanocrystals. ACS Catal. 2021, 11, 11407–11415.

    CAS  Google Scholar 

  44. Wang, D. L.; Liu, S. F.; Wang, J.; Lin, R. Q.; Kawasaki, M.; Rus, E.; Silberstein, K. E.; Lowe, M. A.; Lin, F.; Nordlund, D. et al. Spontaneous incorporation of gold in palladium-based ternary nanoparticles makes durable electrocatalysts for oxygen reduction reaction. Nat. Commun. 2016, 7, 11941.

    CAS  Google Scholar 

  45. Wang, F.; Zhang, Q.; Rui, Z. Y.; Li, J.; Liu, J. G. High-loading Pt-Co/C catalyst with enhanced durability toward the oxygen reduction reaction through surface Au modification. ACS Appl. Mater. Interfaces 2020, 12, 30381–30389.

    CAS  Google Scholar 

  46. Li, Y. J.; Quan, F. X.; Chen, L.; Zhang, W. J.; Yu, H. B.; Chen, C. F. Synthesis of Fe-doped octahedral Pt3Ni nanocrystals with high electro-catalytic activity and stability towards oxygen reduction reaction. RSC Adv. 2014, 4, 1895–1899.

    CAS  Google Scholar 

  47. Kuttiyiel, K. A.; Sasaki, K.; Su, D.; Wu, L. J.; Zhu, Y. M.; Adzic, R. R. Gold-promoted structurally ordered intermetallic palladium cobalt nanoparticles for the oxygen reduction reaction. Nat. Commun. 2014, 5, 5185.

    CAS  Google Scholar 

  48. Zhu, H.; Cai, Y. Z.; Wang, F. H.; Gao, P.; Cao, J. D. Scalable preparation of the chemically ordered Pt-Fe-Au nanocatalysts with high catalytic reactivity and stability for oxygen reduction reactions. ACS Appl. Mater. Interfaces 2018, 10, 22156–22166.

    CAS  Google Scholar 

  49. Fidiani, E.; Thirunavukkarasu, G.; Li, Y.; Chiu, Y. L.; Du, S. F. Au integrated AgPt nanorods for the oxygen reduction reaction in proton exchange membrane fuel cells. J. Mater. Chem. A 2021, 9, 5578–5587.

    CAS  Google Scholar 

  50. Wang, Y. Z.; Wang, B.; Yuan, H. T.; Liang, Z. Z.; Huang, Z. H.; Zhou, Y. Y.; Zhang, W.; Zheng, H. Q.; Cao, R. Inherent mass transfer engineering of a Co, N co-doped carbon material towards oxygen reduction reaction. J. Energy Chem. 2021, 58, 391–396.

    CAS  Google Scholar 

  51. Guo, L. M.; Zhang, D. F.; Guo, L. Structure design reveals the role of Au for ORR catalytic performance optimization in PtCo-based catalysts. Adv. Funct. Mater. 2020, 30, 2001575.

    CAS  Google Scholar 

  52. Qin, Y. C.; Zhang, W. L.; Guo, K.; Liu, X. B.; Liu, J. Q.; Liang, X. Y.; Wang, X. P.; Gao, D. W.; Gan, L. Y.; Zhu, Y. T. et al. Fine-tuning intrinsic strain in penta-twinned Pt-Cu-Mn nanoframes boosts oxygen reduction catalysis. Adv. Funct. Mater. 2020, 30, 1910107.

    CAS  Google Scholar 

  53. Zhu, E. B.; Xue, W.; Wang, S. Y.; Yan, X. C.; Zhou, J. X.; Liu, Y.; Cai, J.; Liu, E. S.; Jia, Q. Y.; Duan, X. F. et al. Enhancement of oxygen reduction reaction activity by grain boundaries in platinum nanostructures. Nano Res. 2020, 13, 3310–3314.

    CAS  Google Scholar 

  54. Gong, M. X.; Deng, Z. P.; Xiao, D. D.; Han, L. L.; Zhao, T. H.; Lu, Y.; Shen, T.; Liu, X. P.; Lin, R. Q.; Huang, T. et al. One-nanometer-thick Pt3Ni bimetallic alloy nanowires advanced oxygen reduction reaction: Integrating multiple advantages into one catalyst. ACS Catal. 2019, 9, 4488–4494.

    CAS  Google Scholar 

  55. Li, S. N.; Wang, Y.; Li, Y. R.; Fang, X.; Liu, Y. J.; Li, M. X.; Wang, Z.; Gao, Y. F.; Sun, H. X.; Gao, F. et al. PtNiCu nanowires with advantageous lattice-plane boundary for enhanced ethanol electrooxidation. Nano Res., in press, https://doi.org/10.1007/s12274-021-3881-2.

  56. Jiao, W. L.; Chen, C.; You, W. B.; Zhao, X. R.; Zhang, J.; Feng, Y. Z.; Wang, P.; Che, R. C. Hollow palladium-gold nanochains with periodic concave structures as superior ORR electrocatalysts and highly efficient SERS substrates. Adv. Energy Mater. 2020, 10, 1904072.

    CAS  Google Scholar 

  57. Mai, L. Q.; Tian, X. C.; Xu, X.; Chang, L.; Xu, L. Nanowire electrodes for electrochemical energy storage devices. Chem. Rev. 2014, 114, 11828–11862.

    CAS  Google Scholar 

  58. Lv, G. Z.; Wu, Y.; Wang, Y. W.; Kang, W.; Zhang, H. J.; Zhou, M.; Huang, Z. Y.; Li, J.; Guo, Z. P.; Wang, Y. Rational design of perfect interface coupling to boost electrocatalytical oxygen reduction. Nano Energy 2020, 76, 105055.

    CAS  Google Scholar 

  59. Sahoo, L.; Garg, R.; Kaur, K.; Vinod, C. P.; Gautam, U. K. Ultrathin twisty PdNi alloy nanowires as highly active ORR electrocatalysts exhibiting morphology-induced durability over 200k cycles. Nano Lett. 2022, 22, 246–254.

    CAS  Google Scholar 

  60. Chattot, R.; Le Bacq, O.; Beermann, V.; Kühl, S.; Herranz, J.; Henning, S.; Kühn, L.; Asset, T.; Guétaz, L.; Renou, G. et al. Surface distortion as a unifying concept and descriptor in oxygen reduction reaction electrocatalysis. Nat. Mater. 2018, 17, 827–833.

    CAS  Google Scholar 

  61. Wang, P.; Cui, H.; Wang, C. X. Ultrathin PtMo-CeOx hybrid nanowire assemblies as high-performance multifunctional catalysts for methanol oxidation, oxygen reduction, and hydrogen oxidation. Chem. Eng. J. 2022, 429, 132435.

    CAS  Google Scholar 

  62. Liao, H. B.; Hou, Y. L. Liquid-phase templateless synthesis of Pt-on-Pd0.85Bi0.15 nanowires and PtPdBi porous nanoparticles with superior electrocatalytic activity. Chem. Mater. 2013, 25, 457–465.

    CAS  Google Scholar 

  63. Yang, F.; Ye, J. Y.; Yuan, Q.; Yang, X. T.; Xie, Z. X.; Zhao, F. L.; Zhou, Z. Y.; Gu, L.; Wang, X. Ultrasmall Pd-Cu-Pt trimetallic twin icosahedrons boost the electrocatalytic performance of glycerol oxidation at the operating temperature of fuel cells. Adv. Funct. Mater. 2020, 30, 1908235.

    CAS  Google Scholar 

  64. Huang, L.; Zheng, X. L.; Gao, G.; Zhang, H.; Rong, K.; Chen, J. X.; Liu, Y. Q.; Zhu, X. Y.; Wu, W. W.; Wang, Y. et al. Interfacial electron engineering of palladium and molybdenum carbide for highly efficient oxygen reduction. J. Am. Chem. Soc. 2021, 143, 6933–6941.

    CAS  Google Scholar 

  65. Lankiang, S.; Chiwata, M.; Baranton, S.; Uchida, H.; Coutanceau, C. Oxygen reduction reaction at binary and ternary nanocatalysts based on Pt, Pd, and Au. Electrochim. Acta 2015, 182, 131–142.

    CAS  Google Scholar 

  66. Yang, Y.; Xiao, W. P.; Feng, X. R.; Xiong, Y.; Gong, M. X.; Shen, T.; Lu, Y.; Abruña, H. D.; Wang, D. L. Golden palladium zinc ordered intermetallics as oxygen reduction electrocatalysts. ACS Nano 2019, 13, 5968–5974.

    CAS  Google Scholar 

  67. Tian, X. L.; Zhao, X.; Su, Y. Q.; Wang, L. J.; Wang, H. M.; Dang, D.; Chi, B.; Liu, H. F.; Hensen, E. J. M.; Lou, X. W. et al. Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells. Science 2019, 366, 850–856.

    CAS  Google Scholar 

  68. He, D. P.; Zhang, L. B.; He, D. S.; Zhou, G.; Lin, Y.; Deng, Z. X.; Hong, X.; Wu, Y. E.; Chen, C.; Li, Y. D. Amorphous nickel boride membrane on a platinum-nickel alloy surface for enhanced oxygen reduction reaction. Nat. Commun. 2016, 7, 12362.

    CAS  Google Scholar 

  69. Luo, L. X.; Fu, C. H.; Wu, A. M.; Zhuang, Z. C.; Zhu, F. J.; Jiang, F. L.; Shen, S. Y.; Cai, X. Y.; Kang, Q.; Zheng, Z. F. et al. Hydrogen-assisted scalable preparation of ultrathin Pt shells onto surfactant-free and uniform Pd nanoparticles for highly efficient oxygen reduction reaction in practical fuel cells. Nano Res. 2022, 15, 1892–1900.

    CAS  Google Scholar 

  70. Liang, Y. Y.; Lei, H.; Wang, S. J.; Wang, Z. L.; Mai, W. J. Pt/Zn heterostructure as efficient air-electrocatalyst for long-life neutral Zn-air batteries. Sci. China Mater. 2021, 64, 1868–1875.

    CAS  Google Scholar 

  71. Lyu, Z. X.; Zhang, X. G.; Wang, Y. C.; Liu, K.; Qiu, C. Y.; Liao, X. Y.; Yang, W. H.; Xie, Z. X.; Xie, S. F. Amplified interfacial effect in an atomically dispersed RuOx-on-Pd 2D inverse nanocatalyst for high-performance oxygen reduction. Angew. Chem., Int. Ed. 2021, 60, 16093–16100.

    CAS  Google Scholar 

  72. Wang, Y. F.; Hall, A. S. Pulsed electrodeposition of metastable Pd31Bi12 nanoparticles for oxygen reduction electrocatalysis. ACS Energy Lett. 2020, 5, 17–22.

    CAS  Google Scholar 

  73. Ma, Z. H.; Tian, H.; Meng, G.; Peng, L. X.; Chen, Y. F.; Chen, C.; Chang, Z. W.; Cui, X. Z.; Wang, L. J.; Jiang, W. et al. Size effects of platinum particles@CNT on HER and ORR performance. Sci. China Mater. 2020, 63, 2517–2529.

    CAS  Google Scholar 

  74. Zhang, Y.; Huang, B. L.; Luo, G.; Sun, T.; Feng, Y. G.; Wang, Y. C.; Ma, Y. H.; Shao, Q.; Li, Y. F.; Zhou, Z. Y. et al. Atomically deviated Pd-Te nanoplates boost methanol-tolerant fuel cells. Sci. Adv. 2020, 6, eaba9731.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21571038), Foundation of Guizhou Province (No. 2019-5666), Education Department of Guizhou Province (No. 2021312), State Key Laboratory of Coal Mine Disaster Dynamics and Control (Chongqing University; No. 2011DA105287-ZR202101), the Open Fund of the Key Lab of Organic Optoelectronics & Molecular Engineering (Tsinghua University), and State Key Laboratory of Physical Chemistry of Solid Surfaces (No. 202009). We gratefully acknowledge Analytical and Testing Center of Chongqing University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Yuan.

Electronic Supplementary Material

12274_2022_4299_MOESM1_ESM.pdf

Interface-rich Au-doped PdBi alloy nanochains as multifunctional oxygen reduction catalysts boost the power density and durability of a direct methanol fuel cell device

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Yao, K.X., Zhao, F. et al. Interface-rich Au-doped PdBi alloy nanochains as multifunctional oxygen reduction catalysts boost the power density and durability of a direct methanol fuel cell device. Nano Res. 15, 6036–6044 (2022). https://doi.org/10.1007/s12274-022-4299-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4299-1

Keywords

Navigation