Skip to main content
Log in

Fe-doped SnO2 nanosheet for ambient electrocatalytic nitrogen reduction reaction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Ammonia plays a vital role in the development of modern agriculture and industry. Compared to the conventional Haber—Bosch ammonia synthesis in industry, electrocatalytic nitrogen reduction reaction (NRR) is considered as a promising and environmental friendly strategy to synthesize ammonia. Here, inspired by biological nitrogenase, we designed iron doped tin oxide (Fe-doped SnO2) for nitrogen reduction. In this work, iron can optimize the interface electron transfer and improve the poor conductivity of the pure SnO2, meanwhile, the synergistic effect between iron and Sn ions improves the catalyst activity. In the electrocatalytic NRR test, Fe-doped SnO2 exhibits a NH3 yield of 28.45 μg·h−1mg −1cat , which is 2.1 times that of pure SnO2, and Faradaic efficiency of 6.54% at −0.8 V vs. RHE in 0.1 M Na2SO4. It also shows good stability during a 12-h long-term stability test. Density functional theory calculations show that doped Fe atoms in SnO2 enhance catalysis performance of some Sn sites by strengthening N—Sn interaction and lowering the energy barrier of the rate-limiting step of NRR. The transient photovoltage test reveals that electrons in the low-frequency region are the key to determining the electron transfer ability of Fe-doped SnO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, Y. L.; Deng, P. J.; Wu, R. Q.; Zhang, X. L.; Sun, C. H.; Li, H. T. Oxygen vacancies for promoting the electrochemical nitrogen reduction reaction. J. Mater. Chem. A 2021, 9, 6694–6709.

    CAS  Google Scholar 

  2. Chen, X. R.; Guo, Y. T.; Du, X. C.; Zeng, Y. S.; Chu, J. W.; Gong, C. H.; Huang, J. W.; Fan, C.; Wang, X. F.; Xiong, J. Atomic structure modification for electrochemical nitrogen reduction to ammonia. Adv. Energy Mater. 2020, 10, 1903172.

    CAS  Google Scholar 

  3. Suryanto, B. H. R.; Du, H. L.; Wang, D. B.; Chen, J.; Simonov, A. N.; MacFarlane, D. R. Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia. Nat. Catal. 2019, 2, 290–296.

    CAS  Google Scholar 

  4. Smith, C.; Hill, A. K.; Torrente-Murciano, L. Current and future role of Haber-Bosch ammonia in a carbon-free energy landscape. Energy Environ. Sci. 2020, 13, 331–344.

    Google Scholar 

  5. Wang, S.; Wei, M.; Wu, B. D.; Cheng, H. Y.; Wang, C. Y. Combined nitrogen deposition and Cd stress antagonistically affect the allelopathy of invasive alien species Canada goldenrod on the cultivated crop lettuce. Sci. Hortic. 2020, 261, 108955.

    CAS  Google Scholar 

  6. Lu, R. F.; Liu, Z. Y.; Shao, Y. D.; Su, J. C.; Li, X. J.; Sun, F.; Zhang, Y. H.; Li, S.; Zhang, Y. L.; Cui, J. et al. Nitric oxide enhances rice resistance to rice black-streaked dwarf virus infection. Rice (N Y) 2020, 13, 24.

    Google Scholar 

  7. Elishav, O.; Mosevitzky Lis, B.; Miller, E. M.; Arent, D. J.; Valera-Medina, A.; Grinberg Dana, A.; Shter, G. E.; Grader, G. S. Progress and prospective of nitrogen-based alternative fuels. Chem. Rev. 2020, 120, 5352–5436.

    CAS  Google Scholar 

  8. Ren, J. T.; Chen, L.; Wang, H. Y.; Yuan, Z. Y. Aqueous rechargeable Zn-N2 battery assembled by bifunctional cobalt phosphate nanocrystals-loaded carbon nanosheets for simultaneous NH3 production and power generation. ACS Appl. Mater. Interfaces 2021, 13, 12106–12117.

    CAS  Google Scholar 

  9. Hou, J. B.; Yang, M.; Zhang, J. L. Recent advances in catalysts, electrolytes and electrode engineering for the nitrogen reduction reaction under ambient conditions. Nanoscale 2020, 12, 6900–6920.

    CAS  Google Scholar 

  10. Guo, C. X.; Ran, J. R.; Vasileff, A.; Qiao, S. Z. Rational design of electrocatalysts and photo(electro)catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions. Energy Environ. Sci. 2018, 11, 45–56.

    CAS  Google Scholar 

  11. Liu, Y. L.; Deng, P. J.; Wu, R. Q.; Geioushy, R. A.; Li, Y. X.; Liu, Y. X.; Zhou, F. L.; Li, H. T.; Sun, C. H. BiVO4/TiO2 heterojunction with rich oxygen vacancies for enhanced electrocatalytic nitrogen reduction reaction. Front. Phys. 2021, 16, 53503.

    Google Scholar 

  12. Cao, N.; Zheng, G. F. Aqueous electrocatalytic N2 reduction under ambient conditions. Nano Res. 2018, 11, 2992–3008.

    CAS  Google Scholar 

  13. Xue, X. L.; Chen, R. P.; Yan, C. Z.; Zhao, P. Y.; Hu, Y.; Zhang, W. J.; Yang, S. Y.; Jin, Z. Review on photocatalytic and electrocatalytic artificial nitrogen fixation for ammonia synthesis at mild conditions: Advances, challenges and perspectives. Nano Res. 2019, 12, 1229–1249.

    CAS  Google Scholar 

  14. Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater., in press, https://doi.org/10.1016/j.apmate.2021.10.004.

  15. Liu, Z. H.; Du, Y.; Zhang, P. F.; Zhuang, Z. C.; Wang, D. S. Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon. Matter 2021, 4, 3161–3194.

    CAS  Google Scholar 

  16. Yang, Y. L.; Mao, B. D.; Gong, G.; Li, D.; Liu, Y. H.; Cao, W. J.; Xing, L.; Zeng, J.; Shi, W. D.; Yuan, S. Q. In-situ growth of Zn-AgIn5S8 quantum dots on g-C3N4 towards 0D/2D heterostructured photocatalysts with enhanced hydrogen production. Int. J. Hyd. Energy 2019, 44, 15882–15891.

    CAS  Google Scholar 

  17. Zhuang, Z. C.; Li, Y.; Huang, J. Z.; Li, Z. L.; Zhao, K. N.; Zhao, Y. L.; Xu, L.; Zhou, L.; Moskaleva, L. V.; Mai, L. Q. Sisyphus effects in hydrogen electrochemistry on metal silicides enabled by silicene subunit edge. Sci. Bull. 2019, 64, 617–624.

    CAS  Google Scholar 

  18. Yin, Y. J.; Tan, Y.; Wei, Q. Y.; Zhang, S. C.; Wu, S. Q.; Huang, Q.; Hu, F. L.; Mi, Y. Nanovilli electrode boosts hydrogen evolution: A surface with superaerophobicity and superhydrophilicity. Nano Res. 2020, 14, 961–968.

    Google Scholar 

  19. Li, Y. L.; Gao, C. L.; Jiang, W. S.; Zhuang, C. Q.; Tan, W. Y.; Li, W. M.; Li, Y. L.; Wang, L. H.; Liao, X. Z.; Sun, Z. C. et al. A game-changing design of low-cost, large-size porous cocatalysts decorated by ultra-small photocatalysts for highly efficient hydrogen evolution. Appl. Catal. B Environ. 2021, 286, 119923.

    CAS  Google Scholar 

  20. Li, W. M.; Zhuang, C. Q.; Li, Y. L.; Gao, C. L.; Jiang, W. S.; Sun, Z. C.; Qi, K. Z. Anchoring ultra-small TiO2 quantum dots onto ultra-thin and large-sized Mxene nanosheets for highly efficient photocatalytic water splitting. Ceram. Int. 2021, 47, 21769–21776.

    CAS  Google Scholar 

  21. Zhang, H.; Li, Y. L.; Li, W. M.; Zhuang, C. Q.; Gao, C. L.; Jiang, W. S.; Sun, W.; Qi, K. Z.; Sun, Z. C.; Han, X. D. Designing large-sized cocatalysts for fast charge separation towards highly efficient visible-light-driven hydrogen evolution. Int. J. Hyd. Energy 2021, 46, 28545–28553.

    CAS  Google Scholar 

  22. Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

    CAS  Google Scholar 

  23. Wang, X. Q.; Wang, W. Y.; Qiao, M.; Wu, G.; Chen, W. X.; Yuan, T. W.; Xu, Q.; Chen, M.; Zhang, Y.; Wang, X. et al. Atomically dispersed Au1 catalyst towards efficient electrochemical synthesis of ammonia. Sci. Bull. 2018, 63, 1246–1253.

    CAS  Google Scholar 

  24. Pang, F. J.; Wang, Z. F.; Zhang, K.; He, J.; Zhang, W. Q.; Guo, C. X.; Ding, Y. Bimodal nanoporous Pd3Cu1 alloy with restrained hydrogen evolution for stable and high yield electrochemical nitrogen reduction. Nano Energy 2019, 58, 834–841.

    CAS  Google Scholar 

  25. Yao, Y.; Wang, H. J.; Yuan, X. Z.; Li, H.; Shao, M. H. Electrochemical nitrogen reduction reaction on ruthenium. ACS Energy Lett. 2019, 4, 1336–1341.

    CAS  Google Scholar 

  26. Wang, R.; He, C. Z.; Chen, W. X.; Zhao, C. X.; Huo, J. R. Rich B active centers in Penta-B2C as high-performance photocatalyst for nitrogen reduction. Chin. Chem. Lett. 2021, 32, 3821–3824.

    CAS  Google Scholar 

  27. Liu, Y. H.; Huang, H.; Cao, W. J.; Mao, B. D.; Liu, Y.; Kang, Z. H. Advances in carbon dots: From the perspective of traditional quantum dots. Mater. Chem. Front. 2020, 4, 1586–1613.

    CAS  Google Scholar 

  28. Li, H. T.; Liu, Y. D.; Liu, Y. L.; Wang, L. Z.; Tang, R.; Deng, P. J.; Xu, Z. Q.; Haynes, B.; Sun, C. H.; Huang, J. Efficient visible light driven ammonia synthesis on sandwich structured C3N4/MoS2/Mn3O4 catalyst. Appl. Catal. B Environ. 2021, 281, 119476.

    CAS  Google Scholar 

  29. Chen, X. Y.; Li, K.; Yang, X. X.; Lv, J. Q.; Sun, S.; Li, S. Q.; Cheng, D. M.; Li, B.; Li, Y. G.; Zang, H. Y. Oxygen vacancy engineering of calcium cobaltate: A nitrogen fixation electrocatalyst at ambient condition in neutral electrolyte. Nano Res. 2021, 14, 501–506.

    CAS  Google Scholar 

  30. Wei, P. P.; Geng, Q.; Channa, A. I.; Tong, X.; Luo, Y. S.; Lu, S. Y.; Chen, G.; Gao, S. Y.; Wang, Z. M.; Sun, X. P. Electrocatalytic N2 reduction to NH3 with high Faradaic efficiency enabled by vanadium phosphide nanoparticle on V foil. Nano Res. 2020, 13, 2967–2972.

    CAS  Google Scholar 

  31. Xing, Y. L.; Kong, X. D.; Guo, X.; Liu, Y.; Li, Q. Y.; Zhang, Y. Z.; Sheng, Y. L.; Yang, X. P.; Geng, Z. G.; Zeng, J. Bi@Sn core—shell structure with compressive strain boosts the electroreduction of CO2 into formic acid. Adv. Sci. (Weinh) 2020, 7, 1902989.

    CAS  Google Scholar 

  32. Liu, Y. T.; Li, D.; Yu, J. Y.; Ding, B. Stable confinement of black phosphorus quantum dots on black tin oxide nanotubes: A robust, double-active electrocatalyst toward efficient nitrogen fixation. Angew. Chem., Int. Ed. 2019, 58, 16439–16444.

    CAS  Google Scholar 

  33. Zhang, L. L.; Cong, M. Y.; Ding, X.; Jin, Y.; Xu, F. F.; Wang, Y.; Chen, L.; Zhang, L. X. A janus Fe-SnO2 catalyst that enables bifunctional electrochemical nitrogen fixation. Angew. Chem., Int. Ed. 2020, 59, 10888–10893.

    CAS  Google Scholar 

  34. Li, G. K.; Jang, H.; Li, Z. J.; Wang, J.; Ji, X. Q.; Kim, M. G.; Liu, X. E.; Cho, J. Oxygen-deficient SnO2 nanoparticles with ultrathin carbon shell for efficient electrocatalytic N2 reduction. Green Energy Environ., in press, https://doi.org/10.1016/j.gee.2020.11.004.

  35. Zhang, L.; Ren, X.; Luo, Y. L.; Shi, X. F.; Asiri, A. M.; Li, T. S.; Sun, X. P. Ambient NH3 synthesis via electrochemical reduction of N2 over cubic sub-micron SnO2 particles. Chem. Commun. (Camb) 2018, 54, 12966–12969.

    CAS  Google Scholar 

  36. Chu, K.; Liu, Y. P.; Li, Y. B.; Wang, J.; Zhang, H. Electronically coupled SnO2 quantum dots and graphene for efficient nitrogen reduction reaction. ACS Appl. Mater. Interfaces 2019, 11, 31806–31815.

    CAS  Google Scholar 

  37. Zhao, S. L.; Qin, Y.; Guo, T.; Li, S.; Liu, X. J.; Ou, M.; Wu, Y. P.; Chen, Y. H. SnS nanoparticles grown on Sn-atom-modified N, S-codoped mesoporous carbon nanosheets as electrocatalysts for CO2 reduction to formate. ACS Appl. Nano Mater. 2021, 4, 2257–2264.

    CAS  Google Scholar 

  38. Bejtka, K.; Zeng, J. Q.; Sacco, A.; Castellino, M.; Hernández, S.; Farkhondehfal, M. A.; Savino, U.; Ansaloni, S.; Pirri, C. F.; Chiodoni, A. Chainlike mesoporous SnO2 as a well-performing catalyst for electrochemical CO2 reduction. ACS Appl. Energy Mater. 2019, 2, 3081–3091.

    CAS  Google Scholar 

  39. Lv, X.; Wang, F. Y.; Du, J.; Liu, Q.; Luo, Y. S.; Lu, S. Y.; Chen, G.; Gao, S. Y.; Zheng, B. Z.; Sun, X. P. Sn dendrites for electrocatalytic N2 reduction to NH3 under ambient conditions. Sustainable Energy Fuels 2020, 4, 4469–4472.

    CAS  Google Scholar 

  40. Ulfa, M.; Wang, P. J.; Zhang, J.; Liu, J. W.; de Marcillac, W. D.; Coolen, L.; Peralta, S.; Pauporté, T. Charge injection and electrical response in low-temperature SnO2-based efficient perovskite solar cells. ACS Appl. Mater. Interfaces 2018, 10, 35118–35128.

    CAS  Google Scholar 

  41. Zhuang, Z. C.; Li, Y.; Li, Y. H.; Huang, J. Z.; Wei, B.; Sun, R.; Ren, Y. J.; Ding, J.; Zhu, J. X.; Lang, Z. Q. et al. Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy Environ. Sci. 2021, 14, 1016–1028.

    CAS  Google Scholar 

  42. Chen, Z. W.; Guo, H. F.; Ma, C. H.; Wang, X.; Jia, X. G.; Yuan, N. Y.; Ding, J. N. Efficiency improvement of Sb2Se3 solar cells based on La-doped SnO2 buffer layer. Solar Energy 2019, 187, 404–410.

    CAS  Google Scholar 

  43. Yang, H. Y.; He, C. Z.; Fu, L.; Huo, J. R.; Zhao, C. X.; Li, X. Y.; Song, Y. Capture and separation of CO2 on BC3 nanosheets: A DFT study. Chin. Chem. Lett. 2021, 32, 3202–3206.

    CAS  Google Scholar 

  44. Fu, L.; Wang, R.; Zhao, C. X.; Huo, J. R.; He, C. Z.; Kim, K. H.; Zhang, W. Construction of Cr-embedded graphyne electrocatalyst for highly selective reduction of CO2 to CH4: A DFT study. Chem. Eng. J. 2021, 414, 128857.

    CAS  Google Scholar 

  45. Zhang, Y. D.; Hu, Z. A.; Liang, Y. R.; Yang, Y. Y.; An, N.; Li, Z. M.; Wu, H. Y. Growth of 3D SnO2 nanosheets on carbon cloth as a binder-free electrode for supercapacitors. J. Mater. Chem. A 2015, 3, 15057–15067.

    CAS  Google Scholar 

  46. Gurunathan, P.; Ette, P. M.; Ramesha, K. Synthesis of hierarchically porous SnO2 microspheres and performance evaluation as Li-ion battery anode by using different binders. ACS Appl. Mater. Interfaces 2014, 6, 16556–16564.

    CAS  Google Scholar 

  47. Wang, D. F.; Yan, X. H.; Zhou, C.; Wang, J. J.; Yuan, X.; Jiang, H.; Zhu, Y. H.; Cheng, X. N.; Li, R. F. A free-standing electrode based on 2D SnS2 nanoplates@3D carbon foam for high performance supercapacitors. Int. J. Energy Res. 2020, 44, 8542–8554.

    CAS  Google Scholar 

  48. Li, X. H.; Ren, X.; Liu, X. J.; Zhao, J. X.; Sun, X.; Zhang, Y.; Kuang, X.; Yan, T.; Wei, Q.; Wu, D. A MoS2 nanosheet-reduced graphene oxide hybrid: An efficient electrocatalyst for electrocatalytic N2 reduction to NH3 under ambient conditions. J. Mater. Chem. A 2019, 7, 2524–2528.

    CAS  Google Scholar 

  49. Du, H.; Yang, C. Z.; Pu, W. H.; Zeng, L. Y.; Gong, J. Y. Enhanced electrochemical reduction of N2 to ammonia over pyrite FeS2 with excellent selectivity. ACS Sustainable Chem. Eng. 2020, 8, 10572–10580.

    CAS  Google Scholar 

  50. Yu, W. K.; Shu, F. H.; Huang, Y. F.; Yang, F. Q.; Meng, Q. G.; Zou, Z.; Wang, J.; Zeng, Z. L.; Zou, G. F.; Deng, S. G. Enhanced electrocatalytic nitrogen reduction activity by incorporation of a carbon layer on SnS microflowers. J. Mater. Chem. A 2020, 8, 20677–20686.

    CAS  Google Scholar 

  51. Zhao, X. H.; Zhang, X.; Xue, Z. M.; Chen, W. J.; Zhou, Z.; Mu, T. C. Fe nanodot-decorated MoS2 nanosheets on carbon cloth: An efficient and flexible electrode for ambient ammonia synthesis. J. Mater. Chem. A 2019, 7, 27417–27422.

    CAS  Google Scholar 

  52. Zhuang, Z. C.; Huang, J. Z.; Li, Y.; Zhou, L.; Mai, L. Q. The holy grail in platinum-free electrocatalytic hydrogen evolution: Molybdenum-based catalysts and recent advances. ChemElectroChem 2019, 6, 3570–3589.

    CAS  Google Scholar 

  53. Hu, L.; Khaniya, A.; Wang, J.; Chen, G.; Kaden, W. E.; Feng, X. F. Ambient electrochemical ammonia synthesis with high selectivity on Fe/Fe oxide catalyst. ACS Catal. 2018, 8, 9312–9319.

    CAS  Google Scholar 

  54. Li, Y.; Kong, Y.; Hou, Y.; Yang, B.; Li, Z. J.; Lei, L. C.; Wen, Z. H. In situ growth of nitrogen-doped carbon-coated γ-Fe2O3 nanoparticles on carbon fabric for electrochemical N2 fixation. ACS Sustainable Chem. Eng. 2019, 7, 8853–8859.

    CAS  Google Scholar 

  55. Yang, H. D.; Liu, Y.; Luo, Y. T.; Lu, S. Q.; Su, B. T.; Ma, J. T. Achieving high activity and selectivity of nitrogen reduction via Fe-N3 coordination on iron single-atom electrocatalysts at ambient conditions. ACS Sustainable Chem. Eng. 2020, 8, 12809–12816.

    CAS  Google Scholar 

  56. Chen, S. M.; Perathoner, S.; Ampelli, C.; Mebrahtu, C.; Su, D. S.; Centi, G. Electrocatalytic synthesis of ammonia at room temperature and atmospheric pressure from water and nitrogen on a carbon-nanotube-based electrocatalyst. Angew. Chem., Int. Ed. 2017, 56, 2699–2703.

    CAS  Google Scholar 

  57. Zhu, X. J.; Zhao, J. X.; Ji, L.; Wu, T. W.; Wang, T.; Gao, S. Y.; Alshehri, A. A.; Alzahrani, K. A.; Luo, Y. L.; Xiang, Y. M. et al. FeOOH quantum dots decorated graphene sheet: An efficient electrocatalyst for ambient N2 reduction. Nano Res. 2019, 13, 209–214.

    Google Scholar 

  58. Gao, C. L.; Zhuang, C. Q.; Li, Y. L.; Qi, H. Y.; Chen, G.; Sun, Z. C.; Zou, J.; Han, X. D. In situ liquid cell transmission electron microscopy guiding the design of large-sized cocatalysts coupled with ultra-small photocatalysts for highly efficient energy harvesting. J. Mater. Chem. A 2021, 9, 13056–13064.

    CAS  Google Scholar 

  59. Wang, Z. Q.; Zheng, K.; Liu, S. L.; Dai, Z. C.; Xu, Y.; Li, X. N.; Wang, H. J.; Wang, L. Electrocatalytic nitrogen reduction to ammonia by Fe2O3 nanorod array on carbon cloth. ACS Sustainable Chem. Eng. 2019, 7, 11754–11759.

    CAS  Google Scholar 

  60. Wu, J.; Zhou, Y. J.; Nie, H. D.; Wei, K. Q.; Huang, H.; Liao, F.; Liu, Y.; Shao, M. W.; Kang, Z. H. Carbon dots regulate the interface electron transfer and catalytic kinetics of Pt-based alloys catalyst for highly efficient hydrogen oxidation. J. Energy Chem. 2022, 66, 61–67.

    CAS  Google Scholar 

  61. Wu, Q. Y.; Cao, J. J.; Wang, X.; Liu, Y.; Zhao, Y. J.; Wang, H.; Liu, Y.; Huang, H.; Liao, F.; Shao, M. W. et al. A metal-free photocatalyst for highly efficient hydrogen peroxide photoproduction in real seawater. Nat. Commun. 2021, 12, 483.

    CAS  Google Scholar 

  62. Nie, H. D.; Liu, Y.; Li, Y.; Wei, K. Q.; Wu, Z. Y.; Shi, H.; Huang, H.; Liu, Y.; Shao, M. W.; Kang, Z. H. In-situ transient photovoltage study on interface electron transfer regulation of carbon dots/NiCo2O4 photocatalyst for the enhanced overall water splitting activity. Nano Res. 2022, 15, 1786–1795.

    CAS  Google Scholar 

  63. Liu, Q.; Zhang, X. X.; Zhang, B.; Luo, Y. L.; Cui, G. W.; Xie, F. Y.; Sun, X. P. Ambient N2 fixation to NH3 electrocatalyzed by a spinel Fe3O4 nanorod. Nanoscale 2018, 10, 14386–14389.

    CAS  Google Scholar 

  64. Liu, X. E.; Jang, H.; Li, P.; Wang, J.; Qin, Q.; Kim, M. G.; Li, G. K.; Cho, J. Antimony-based composites loaded on phosphorus-doped carbon for boosting faradaic efficiency of the electrochemical nitrogen reduction reaction. Angew. Chem., Int. Ed. 2019, 58, 13329–13334.

    CAS  Google Scholar 

  65. Huang, B.; Wu, Y. F.; Chen, B. B.; Qian, Y.; Zhou, N. G.; Li, N. Transition-metal-atom-pairs deposited on g-CN monolayer for nitrogen reduction reaction: Density functional theory calculations. Chin. J. Catal. 2021, 42, 1160–1167.

    CAS  Google Scholar 

  66. Chen, X. Z.; Ong, W. J.; Zhao, X. J.; Zhang, P.; Li, N. Insights into electrochemical nitrogen reduction reaction mechanisms: Combined effect of single transition-metal and boron atom. J. Energy Chem. 2021, 58, 577–585.

    CAS  Google Scholar 

  67. Huang, B.; Chen, B. B.; Zhu, G. P.; Peng, J. H.; Zhang, P.; Qian, Y.; Li, N. Electrochemical ammonia synthesis via NO reduction on 2D-MOF. ChemPhysChem 2022, 23, e202100785.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51802126 and 52072152), the Jiangsu University Jinshan Professor Fund and the Jiangsu Specially-Appointed Professor Fund, Open Fund from Guangxi Key Laboratory of Electrochemical Energy Materials, and the Science and Technology Planning Social Development Project of Zhenjiang City (No. SH2019010).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yixian Liu, Jiujun Deng, Zhenhui Kang or Haitao Li.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Liu, Y., Liu, X. et al. Fe-doped SnO2 nanosheet for ambient electrocatalytic nitrogen reduction reaction. Nano Res. 15, 6026–6035 (2022). https://doi.org/10.1007/s12274-022-4298-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4298-2

Keywords

Navigation