Skip to main content
Log in

Construction of isolated Ni sites on nitrogen-doped hollow carbon spheres with Ni–N3 configuration for enhanced reduction of nitroarenes

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Designing and synthesizing high-efficiency non-precious metal-based catalysts having uniform active sites increases the reactivity and selectivity of materials and provides a platform for an in-depth understanding of their catalytic reaction mechanism. In this study, we provided an approach for fabricating isolated nickel single-atom sites (Ni SAs) with high loading (4.9 wt.%) stabilized on nitrogen-doped hollow carbon spheres (NHCS) using a core-shell structured Zn/Ni bimetallic zeolitic imidazolate framework (ZIF) composite as the sacrificial template. The as-fabricated Ni SAs/NHCS catalyst shows superior activity, selectivity, and recycling durability for the catalytic transfer hydrogenation of nitrobenzene to aniline, thus achieving 100% yield of aniline with a turn-over frequency (TOF) value as high as 29.9 h−1 under mild conditions. This TOF value is considerably superior to the supported Ni nanoparticle catalysts. The experiments designed show that the hollow structure feature of NHCS facilitates accessible active sites and mass transfer, which thus contributes to the enhancement of the catalytic performance of Ni SAs/NHCS. Density functional theory calculations show the high chemo-selectivity and activity of the Ni SAs catalyst, arising from the unique role of the single Ni-N3 site on simultaneously activating the H donor (N2H4) and substrate, as well as the hydrogenation of the–NOH group as the rate-determining step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huang, H. G.; Shen, K.; Chen, F. F.; Li, Y. W. Metal-organic frameworks as a good platform for the fabrication of single-atom catalysts. ACS Catal. 2020, 10, 6579–6586.

    Article  CAS  Google Scholar 

  2. Zhao, Q.; Sun, J.; Li, S. C.; Huang, C. P.; Yao, W. F.; Chen, W.; Zeng, T.; Wu, Q.; Xu, Q. J. Single nickel atoms anchored on nitrogen-doped graphene as a highly active cocatalyst for photocatalytic H2 evolution. ACS Catal. 2018, 8, 11863–11874.

    Article  CAS  Google Scholar 

  3. Zhang, Q. Q.; Guan, J. Q. Applications of single-atom catalysts. Nano Res. 2022, 15, 38–70.

    Article  CAS  Google Scholar 

  4. Wang, M. G.; Wang, Z. Single Ni atom incorporated with pyridinic nitrogen graphene as an efficient catalyst for CO oxidation: First-principles investigation. RSC Adv. 2017, 7, 48819–48824.

    Article  CAS  Google Scholar 

  5. Zhao, J.; Ji, S. F.; Guo, C. X.; Li, H. J.; Dong, J. C.; Guo, P.; Wang, D. S.; Li, Y. D; Toste, F. D. A heterogeneous iridium single-atom-site catalyst for highly regioselective carbenoid O-H bond insertion. Nat. Catal. 2021, 4, 523–531.

    Article  CAS  Google Scholar 

  6. Li, W. H.; Yang, J. R.; Wang, D. S.; Li, Y. D. Striding the threshold of an atom era of organic synthesis by single-atom catalysis. Chem 2022, 8, 119–140.

    Article  Google Scholar 

  7. Zhang, X. F.; Chang, L.; Yang, Z. J.; Shi, Y. N.; Long, C.; Han, J. Y.; Zhang, B. H.; Qiu, X. Y.; Li, G. D.; Tang, Z. Y. Facile synthesis of ultrathin metal-organic framework nanosheets for Lewis acid catalysis. Nano Res. 2019, 12, 437–440.

    Article  CAS  Google Scholar 

  8. Yin, P. Q.; Yao, T.; Wu, Y. E.; Zheng, L. R.; Lin, Y.; Liu, W.; Ju, H. X.; Zhu, J. F.; Hong, X.; Deng, Z. X. et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem., Int. Ed. 2016, 55, 10800–10805.

    Article  CAS  Google Scholar 

  9. Zhang, J.; Zheng, C. Y.; Zhang, M. L.; Qiu, Y. J.; Xu, Q.; Cheong, W. C.; Chen, W. X.; Zheng, L. R.; Gu, L.; Hu, Z. P. et al. Controlling N-doping type in carbon to boost single-atom site Cu catalyzed transfer hydrogenation of quinoline. Nano Res. 2020, 13, 3082–3087.

    Article  Google Scholar 

  10. Jiao, L.; Jiang, H. L. Metal-organic-framework-based single-atom catalysts for energy applications. Chem 2019, 5, 786–804.

    Article  CAS  Google Scholar 

  11. Jiang, J. J.; Jiang, P.; Wang, D. S.; Li, Y. D. The synthetic strategies for single atomic site catalysts based on metal-organic frameworks. Nanoscale 2020, 12, 20580–20589.

    Article  CAS  Google Scholar 

  12. Wang, Y. R.; Hu, R. M.; Li, Y. C.; Wang, F. H.; Shang, J. X.; Shui, J. L. High-throughput screening of carbon-supported single metal atom catalysts for oxygen reduction reaction. Nano Res. 2022, 15, 1054–1060.

    Article  CAS  Google Scholar 

  13. Lin, L. L.; Zhou, W.; Gao, R.; Yao, S. Y.; Zhang, X.; Xu, W. Q.; Zheng, S. J.; Jiang, Z.; Yu, Q. L.; Li, Y. W. et al. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts. Nature 2017, 544, 80–83.

    Article  CAS  Google Scholar 

  14. Ma, D. D.; Zhu, Q. L. MOF-based atomically dispersed metal catalysts: Recent progress towards novel atomic configurations and electrocatalytic applications. Coordin. Chem. Rev. 2020, 422, 213483.

    Article  CAS  Google Scholar 

  15. Cao, Y. Q.; Zhang, H.; Ji, S. F.; Sui, Z. J.; Jiang, Z.; Wang, D. S.; Zaera, F.; Zhou, X. G.; Duan, X. Z.; Li, Y. D. Adsorption site regulation to guide atomic design of Ni-Ga catalysts for acetylene semi-hydrogenation. Angew. Chem., Int. Ed. 2020, 59, 11647–11652.

    Article  CAS  Google Scholar 

  16. Liu, M. M.; Wang, L. L.; Zhao, K. N.; Shi, S. S.; Shao, Q. S.; Zhang, L.; Sun, X. L.; Zhao, Y. F.; Zhang, J. J. Atomically dispersed metal catalysts for the oxygen reduction reaction: Synthesis, characterization, reaction mechanisms and electrochemical energy applications. Energy Environ. Sci. 2019, 12, 2890–2923.

    Article  CAS  Google Scholar 

  17. Liang, J. X.; Yu, Q.; Yang, X. F.; Zhang, T.; Li, J. A systematic theoretical study on FeOx-supported single-atom catalysts: M1/FeOx for CO oxidation. Nano Res. 2018, 11, 1599–1611.

    Article  CAS  Google Scholar 

  18. Luo, F.; Zhu, J. B.; Ma, S. X.; Li, M.; Xu, R. Z.; Zhang, Q.; Yang, Z. H.; Qu, K. G.; Cai, W. W.; Chen, Z. W. Regulated coordination environment of Ni single atom catalyst toward high-efficiency oxygen electrocatalysis for rechargeable zinc-air batteries. Energy Storage Mater. 2021, 35, 723–730.

    Article  Google Scholar 

  19. Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. 2021, 100013, in press, https://doi.org/10.1016/j.aamate.2021.10.004.

  20. Xiong, Y.; Sun, W. M.; Xin, P. Y.; Chen, W. X.; Zheng, X. S.; Yan, W. S.; Zheng, L. R.; Dong, J. C.; Zhang, J.; Wang, D. S. et al. Gram-scale synthesis of high-loading single-atomic-site Fe catalysts for effective epoxidation of styrene. Adv. Mater. 2020, 32, 2000896.

    Article  CAS  Google Scholar 

  21. Manna, K.; Ji, P. F.; Lin, Z. K.; Greene, F. X.; Urban, A.; Thacker, N. C.; Lin, W. B. Chemoselective single-site earth-abundant metal catalysts at metal-organic framework nodes. Nat. Commun. 2016, 7, 12610.

    Article  CAS  Google Scholar 

  22. Gan, G. Q.; Li, X. Y.; Wang, L.; Fan, S. Y.; Mu, J. C.; Wang, P. L.; Chen, G. H. Active sites in single-atom Fe-Nx-C nanosheets for selective electrochemical dechlorination of 1, 2-dichloroethane to ethylene. ACS Nano 2020, 14, 9929–9937.

    Article  CAS  Google Scholar 

  23. Jiang, K.; Siahrostami, S.; Zheng, T. T.; Hu, Y. F.; Hwang, S.; Stavitski, E.; Peng, Y. D.; Dynes, J.; Gangisetty, M.; Su, D. et al. Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction. Energy Environ. Sci. 2018, 17, 893–903.

    Article  Google Scholar 

  24. Jing, H. Y.; Zhao, Z. Y.; Zhang, J. W.; Zhu, C.; Liu, W.; Li, N. N.; Hao, C.; Shi, Y. T.; Wang, D. S. Atomic evolution of metal-organic frameworks into Co-N3 coupling vacancies by cooperative cascade protection strategy for promoting triiodide reduction. J. Phys. Chem. C 2021, 125, 6147–6156.

    Article  CAS  Google Scholar 

  25. Jing, H. Y.; Liu, W.; Zhao, Z. Y.; Zhang, J. W.; Zhu, C.; Shi, Y. T.; Wang, D. S.; Li, Y. D. Electronics and coordination engineering of atomic cobalt trapped by oxygen-driven defects for efficient cathode in solar cells. Nano Energy 2021, 89, 106365.

    Article  CAS  Google Scholar 

  26. Hu, L. Y.; Li, W. R.; Wang, L.; Wang, B. Turning metal-organic frameworks into efficient single-atom catalysts via pyrolysis with a focus on oxygen reduction reaction catalysts. EnergyChem 2021, 3, 100056.

    Article  CAS  Google Scholar 

  27. Ning, L. M.; Liao, S. Y.; Li, H.; Tong, R. Y.; Dong, C. Q.; Zhang, M. T.; Gu, W.; Liu, X. Carbon-based materials with tunable morphology confined Ni(0) and Ni-Nx active sites: Highly efficient selective hydrogenation catalysts. Carbon 2019, 154, 48–57.

    Article  CAS  Google Scholar 

  28. Gong, Y. N.; Jiao, L.; Qian, Y. Y.; Pan, C. Y.; Zheng, L. R.; Cai, X. C.; Liu, B.; Yu, S. H.; Jiang, H. L. Regulating the coordination environment of MOF-templated single-atom nickel electrocatalysts for boosting CO2 reduction. Angew. Chem., Int. Ed. 2020, 59, 2705–2709.

    Article  CAS  Google Scholar 

  29. Sun, T. T.; Xu, L. B.; Wang, D. S.; Li, Y. D. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res. 2019, 12, 2067–2080.

    Article  CAS  Google Scholar 

  30. Qu, Y. T.; Li, Z. J.; Chen, W. X.; Lin, Y.; Yuan, T. W.; Yang, Z. K.; Zhao, C. M.; Wang, J.; Zhao, C.; Wang, X. et al. Direct transformation of bulk copper into copper single sites via emitting and trapping of atoms. Nat. Catal. 2018, 1, 781–786.

    Article  CAS  Google Scholar 

  31. Wang, G. H.; Hilgert, J.; Richter, F. H.; Wang, F.; Bongard, H. J.; Spliethoff, B.; Weidenthaler, C.; Schüth, F. Platinum-cobalt bimetallic nanoparticles in hollow carbon nanospheres for hydrogenolysis of 5-hydroxymethylfurfural. Nat. Mater. 2014, 13, 293–300.

    Article  Google Scholar 

  32. Wei, Y. S.; Zhang, M.; Zou, R. Q.; Xu, Q. Metal-organic framework-based catalysts with single metal sites. Chem. Rev. 2020, 120, 12089–12174.

    Article  CAS  Google Scholar 

  33. Fan, R. Y.; Hu, Z.; Chen, C.; Zhu, X. G.; Zhang, H. M.; Zhang, Y. X.; Zhao, H. J.; Wang, G. Z. Highly dispersed nickel anchored on a N-doped carbon molecular sieve derived from metal-organic frameworks for efficient hydrodeoxygenation in the aqueous phase. Chem. Commun. 2020, 56, 6696–6699.

    Article  CAS  Google Scholar 

  34. Liu, J.; Li, Z. Y.; Zhang, X.; Otake, K. I.; Zhang, L.; Peters, A. W.; Young, M. J.; Bedford, N. M.; Letourneau, S. P.; Mandia, D. J. et al. Introducing nonstructural ligands to zirconia-like metal-organic framework nodes to tune the activity of node-supported nickel catalysts for ethylene hydrogenation. ACS Catal. 2019, 9, 3198–3207.

    Article  CAS  Google Scholar 

  35. Xu, Y.; Shan, W. X.; Liang, X.; Gao, X. H.; Li, W. Z.; Li, H. M.; Qiu, X. Q. Cobalt nanoparticles encapsulated in nitrogen-doped carbon shells: Efficient and stable catalyst for nitrobenzene reduction. Ind. Eng. Chem. Res. 2020, 59, 4367–4376.

    Article  CAS  Google Scholar 

  36. Lee, J. H.; Jang, J. H.; Kim, J.; Yoo, S. J. Bimetallic ZIFs derived nitrogen-doped hollow carbon with carbon nanotube bridges as a superior oxygen reduction reaction electrocatalyst. J. Ind. Eng. Chem. 2021, 97, 466–475.

    Article  CAS  Google Scholar 

  37. Cai, Q. L.; Xu, Q. H.; Zhang, Y. Y.; Fu, Y. H.; Chen, D. L.; Zhang, J. W.; Zhu, W. D.; Zhang, F. M. Boosted catalytic hydrogenation performance using isolated Co sites anchored on nitrogen-incorporated hollow porous carbon. J. Phys. Chem. C 2021, 125, 5088–5098.

    Article  CAS  Google Scholar 

  38. Dai, X. Y.; Chen, Z.; Yao, T.; Zheng, L. R.; Lin, Y.; Liu, W.; Ju, H. X.; Zhu, J. F.; Hong, X.; Wei, S. Q. et al. Single Ni sites distributed on N-doped carbon for selective hydrogenation of acetylene. Chem. Commun. 2017, 53, 11568–11571.

    Article  CAS  Google Scholar 

  39. Chen, Y. J.; Ji, S. F.; Wang, Y. G.; Dong, J. C.; Chen, W. X.; Li, Z.; Shen, R. G.; Zheng, L. R.; Zhuang, Z. B.; Wang, D. S. et al. Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2017, 129, 6937–6941.

    Article  Google Scholar 

  40. Yang, Q. H.; Yang, C. C.; Lin, C. H.; Jiang, H. L. Metal-organic-framework-derived hollow N-doped porous carbon with ultrahigh concentrations of single Zn atoms for efficient carbon dioxide conversion. Angew. Chem., Int. Ed. 2019, 58, 3511–3515.

    Article  CAS  Google Scholar 

  41. Li, Y.; Li, S. F. Low-cost CuFeCo@MIL-101 as an efficient catalyst for catalytic hydrolysis of ammonia borane. Int. J. Hydrogen Energy 2019, 45, 10433–10441.

    Article  Google Scholar 

  42. Pan, H. J.; Peng, Y. Y.; Lu, X. H.; He, J.; He, L.; Wang, C. L.; Yue, F. F.; Zhang, H. F.; Zhou, D.; Xia, Q. H. Well-constructed Ni@CN material derived from di-ligands Ni-MOF to catalyze mild hydrogenation of nitroarenes. Mol. Catal. 2020, 485, 110838.

    Article  Google Scholar 

  43. Zhou, Y. H.; Yang, Q. H.; Chen, Y. Z.; Jiang, H. L. Low-cost CuNi@MIL-101 as an excellent catalyst toward cascade reaction: Integration of ammonia borane dehydrogenation with nitroarene hydrogenation. Chem. Commun. 2017, 53, 12361–12364.

    Article  CAS  Google Scholar 

  44. Advani, J. H.; Ravi, K.; Naikwadi, D. R.; Baja, H. C.; Gawande, M. B.; Biradar, A. V. Bio-waste chitosan-derived N-doped CNT-supported Ni nanoparticles for selective hydrogenation of nitroarenes. Dalton Trans. 2020, 49, 10431–10440.

    Article  CAS  Google Scholar 

  45. Zhou, M.; Jiang, Y.; Wang, G.; Wu, W. J.; Chen, W. X.; Yu, P.; Lin, Y. Q.; Mao, J. J.; Mao, L. Q. Single-atom Ni-N4 provides a robust cellular NO sensor. Nat. Commun. 2020, 11, 3188.

    Article  CAS  Google Scholar 

  46. Ma, X.; Zhou, Y. X.; Liu, H.; Li, Y.; Jiang, H. L. A MOF-derived Co-CoO@N-doped porous carbon for efficient tandem catalysis: Dehydrogenation of ammonia borane and hydrogenation of nitro compounds. Chem. Commun. 2016, 52, 7719–7722.

    Article  CAS  Google Scholar 

  47. Yun, R. R.; Zhang, S.; Ma, W. J.; Lv, X.; Wang, S. J.; Sheng, T.; Wang, S. N. Fe/Fe3C encapsulated in N-doped carbon tubes: A recyclable catalyst for hydrogenation with high selectivity. Inorg. Chem. 2019, 58, 9469–9475.

    Article  CAS  Google Scholar 

  48. She, W.; Qi, T. Q. J.; Cui, M. X.; Yan, P. F.; Ng, S. W.; Li, W. Z.; Li, G. M. High catalytic performance of a CeO2-supported Ni catalyst for hydrogenation of nitroarenes, fabricated via coordination-assisted strategy. ACS Appl. Mater. Interfaces 2018, 10, 14698–17487.

    Article  CAS  Google Scholar 

  49. Xiong, W. F.; Li, H. F.; Wang, H. M.; Yi, J. D.; You, H. H.; Zhang, S. Y.; Hou, Y.; Cao, M. N.; Zhang, T.; Cao, R. Hollow mesoporous carbon sphere loaded Ni-N4 single-atom: Support structure study for CO2 electrocatalytic reduction catalyst. Small 2020, 16, 2003943.

    Article  CAS  Google Scholar 

  50. Liu, W. G.; Chen, Y. J.; Qi, H. F.; Zhang, L. L.; Yan, W. S.; Liu, X. Y.; Yang, X. F.; Miao, S.; Wang, W. T.; Liu, C. G. et al. A durable nickel single-atom catalyst for hydrogenation reactions and cellulose valorization under harsh conditions. Angew. Chem., Int. Ed. 2018, 57, 7071–7075.

    Article  CAS  Google Scholar 

  51. Lee, S. Y.; Jang, H. W.; Lee, H. R.; Joh, H. I. Size effect of metal-organic frameworks with iron single-atom catalysts on oxygen-reduction reactions. Carbon Lett. 2021, 31, 1349–1355.

    Article  Google Scholar 

  52. Wang, F.; Feng, T.; Jin, X. J.; Zhou, Y. L.; Xu, Y. J.; Gao, Y. H.; Li, H. S.; Lei, J. F. Atomic Co/Ni active sites assisted MOF-derived rich nitrogen-doped carbon hollow nanocages for enhanced lithium storage. Chem. Eng. J. 2021, 420, 127583.

    Article  CAS  Google Scholar 

  53. Xu, D.; Pan, Y.; Zhu, L. K.; Yusran, Y.; Zhang, D. L.; Fang, Q. R.; Xue, M.; Qiu, S. L. Simple coordination complex-derived Ni NP anchored N-doped porous carbons with high performance for reduction of nitroarenes. CrystEngComm 2017, 19, 6612–6619.

    Article  CAS  Google Scholar 

  54. Wang, L. N.; Zhang, J. W.; Zheng, L. R.; Yang, J. R.; Li, Y. C; Wan, X.; Liu, X. F.; Zhang, X. X.; Yu, R. H.; Shui, J. L. Carbon black-supported FM-N-C (FM = Fe, Co, Ni) single-atom catalysts synthesized by the self-catalysis of oxygen-coordinated ferrous metal atoms. J. Mater. Chem. A 2020, 8, 13166–13172.

    Article  CAS  Google Scholar 

  55. Zhao, C. M.; Dai, X. Y.; Yao, T.; Chen, W. X.; Wang, X. Q.; Wang, J.; Yang, J.; Wei, S. Q.; Wu, Y. E.; Li, Y. D. Ionic exchange of metal-organic frameworks to access single nickel sites for efficient electroreduction of CO2. J. Am. Chem. Soc. 2017, 139, 8078–8081.

    Article  CAS  Google Scholar 

  56. Hu, B. T.; Huang, A. J.; Zhang, X. J.; Chen, Z.; Tu, R. Y.; Zhu, W.; Zhuang, Z. B.; Chen, C.; Peng, Q.; Li, Y. D. Atomic Co/Ni dual sites with N/P-coordination as bifunctional oxygen electrocatalyst for rechargeable zinc-air batteries. Nano Res. 2021, 14, 3482–3488.

    Article  CAS  Google Scholar 

  57. Zhang, M.; Hu, Z.; Gu, L.; Zhang, Q. H.; Zhang, L. H.; Song, Q.; Zhou, W.; Hu, S. Electrochemical conversion of CO2 to syngas with a wide range of CO/H2 ratio over Ni/Fe binary single-atom catalysts. Nano Res. 2020, 13, 3206–3211.

    Article  CAS  Google Scholar 

  58. Chen, Y. Q.; Yao, Y. J.; Xia, Y. J.; Mao, K.; Tang, G. G.; Wu, Q.; Yang, L. J.; Wang, X. Z.; Sun, X. H.; Hu, Z. Advanced Ni-N-C single-site catalysts for CO2 electroreduction to CO based on hierarchical carbon nanocages and S-doping. Nano Res. 2020, 13, 2777–2783.

    Article  CAS  Google Scholar 

  59. Zhao, S. Y.; Cheng, Y.; Veder, J. P.; Johannessen, B.; Saunders, M.; Zhang, L. J.; Liu, C.; Chisholm, M. F.; De Marco, R.; Liu, J. et al. One-pot pyrolysis method to fabricate carbon nanotube supported Ni single-atom catalysts with ultrahigh loading. ACS Appl. Energy Mater. 2018, 1, 5286–5297.

    CAS  Google Scholar 

  60. Abbas, S. A.; Song, J. T.; Tan, Y. C.; Nam, K. M.; Oh, J.; Jung, K. D. Synthesis of a nickel single-atom catalyst based on Ni-N4−xCx active sites for highly efficient CO2 reduction utilizing a gas diffusion electrode. ACS Appl. Energy Mater. 2020, 3, 8739–8745.

    Article  CAS  Google Scholar 

  61. Song, X. Z.; Li, N.; Zhang, H.; Wang, L.; Yan, Y. J.; Wang, H.; Wang, L. Y.; Bian, Z. Y. Graphene-supported single nickel atom catalyst for highly selective and efficient hydrogen peroxide production. ACS Appl. Mater. Interfaces 2020, 12, 17519–17527.

    Article  CAS  Google Scholar 

  62. Jiao, L.; Zhu, J. T.; Zhang, Y.; Yang, W. J.; Zhou, S. Y.; Li, A. W.; Xie, C. F.; Zheng, X. S.; Zhou, W.; Yu, S. H. et al. Non-bonding interaction of neighboring Fe and Ni single-atom pairs on MOF-derived N-doped carbon for enhanced CO2 electroreduction. J. Am. Chem. Soc. 2021, 143, 19417–19424.

    Article  CAS  Google Scholar 

  63. Meza, E.; Diaz, R. E.; Li, C. W. Solution-phase activation and functionalization of colloidal WS2 nanosheets with Ni single atoms. ACS Nano 2020, 14, 2238–2247.

    Article  CAS  Google Scholar 

  64. Wang, Y.; Jiang, Z.; Zhang, X.; Niu, Z. Y.; Zhou, Q. Q.; Wang, X. J.; Li, H.; Lin, Z. C.; Zheng, H. Z.; Liang, Y. Y. Metal phthalocyanine-derived single-atom catalysts for selective CO2 electroreduction under high current densities. ACS Appl. Mater. Interfaces 2020, 12, 33795–33802.

    Article  CAS  Google Scholar 

  65. Yang, F.; Wang, M. J.; Liu, W.; Yang, B.; Wang, Y.; Luo, J.; Tang, Y. S.; Hou, L. Q.; Li, Y.; Li, Z. H. et al. Atomically dispersed Ni as the active site towards selective hydrogenation of nitroarenes. Green Chem. 2019, 21, 704–711.

    Article  CAS  Google Scholar 

  66. Zhou, D.; Zhang, L. L.; Liu, X. Y.; Qi, H. F.; Liu, Q. G.; Yang, J.; Su, Y.; Ma, J. Y.; Yin, J. Z.; Wang, A. Q. Tuning the coordination environment of single-atom catalyst M-N-C towards selective hydrogenation of functionalized nitroarenes. Nano Res. 2022, 15, 519–527.

    Article  CAS  Google Scholar 

  67. Yuan, C. Z.; Zhan, L. Y.; Liu, S. J.; Chen, F.; Lin, H. J.; Wu, X. L.; Chen, J. R. Semi-sacrificial template synthesis of single-atom Ni sites supported on hollow carbon nanospheres for efficient and stable electrochemical CO2 reduction. Inorg. Chem. Front. 2020, 7, 1719–1725.

    Article  CAS  Google Scholar 

  68. Martín-Jimeno, F. J.; Suárez-García, F.; Paredes, J. I.; Martínez-Alonso, A.; Tascón, J. M. D. Nickel nanoparticle/carbon catalysts derived from a novel aqueous-synthesized metal-organic framework for nitroarene reduction. J. Alloys Compd. 2021, 853, 157348.

    Article  Google Scholar 

  69. Feng, Y. C.; Long, S. S.; Chen, B. L.; Jia, W. L.; Xie, S. J.; Sun, Y.; Tang, X.; Yang, S. L.; Zeng, X. H.; Lin, L. Inducing electron dissipation of pyridinic N enabled by single Ni-N4 sites for the reduction of aldehydes/ketones with ethanol. ACS Catal. 2021, 11, 6398–6405.

    Article  CAS  Google Scholar 

  70. Fan, Y. F.; Zhuang, C. F.; Li, S. J.; Wang, Y.; Zou, X. Q.; Liu, X. T.; Huang, W. M.; Zhu, G. S. Efficient single-atom Ni for catalytic transfer hydrogenation of furfural to furfuryl alcohol. J. Mater. Chem. A 2021, 9, 1110–1118.

    Article  CAS  Google Scholar 

  71. Mahata, A.; Rai, R. K.; Choudhuri, I.; Singh, S. K.; Pathak, B. Direct vs. indirect pathway for nitrobenzene reduction reaction on a Ni catalyst surface: A density functional study. Phys. Chem. Chem. Phys. 2014, 16, 26365–26374.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial assistance rendered by the National Natural Science Foundation of China (Nos. 21576243 and 21701168), Natural Science Foundation of Zhejiang Province (Nos. LY18B060006, LY17B060001, and LY21B030003), National Key R&D Program of China (No. 2020YFA0406101), Dalian high level talent innovation project (No. 2019RQ063), and Open project Foundation of State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (No. 20200021). We are also thankful to BL14W1 beamline of Shanghai Synchrotron Radiation Facility (SSRF) Shanghai for providing the beam time.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to De-Li Chen, Jiangwei Zhang, Weidong Zhu or Fumin Zhang.

Electronic Supplementary Material

12274_2022_4290_MOESM1_ESM.pdf

Construction of isolated Ni sites on nitrogen-doped hollow carbon spheres with Ni–N3 configuration for enhanced reduction of nitroarenes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, B., Guo, R., Cai, Q. et al. Construction of isolated Ni sites on nitrogen-doped hollow carbon spheres with Ni–N3 configuration for enhanced reduction of nitroarenes. Nano Res. 15, 6001–6009 (2022). https://doi.org/10.1007/s12274-022-4290-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4290-x

Keywords

Navigation