Skip to main content
Log in

Controllable synthesized step-scheme heterojunction of CuBi2O4 decorated WO3 plates for visible-light-driven CO2 reduction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Rational design and construction of step-scheme (S-scheme) photocatalyst has received much attention in the field of CO2 reduction because of its great potential to solve the current energy and environmental crises. In this study, a series of plate-like WO3/CuBi2O4 (WO/CBO) photocatalysts were synthesized. The CO and CH4 yields over optimal composite reached 1, 115.8 and 67.2 µmol/m2 after 9 h visible light illumination (λ > 400 nm), which was higher than those of two pure catalysts in CO2 photoreduction. The product yields slightly decreased in the 7th cycling. Besides, the staggered band structure of heterojunction was characterized by diffuse reflectance spectroscopy (DRS) and valence band-X-ray photoelectron spectroscopy (VB-XPS), and a S-scheme charge transfer mechanism was verified by detecting electron spin resonance (ESR) and XPS result about surface composition of WO/CBO catalyst in dark or light. This work may be useful for rational designing of S-scheme photocatalyst and provides some illuminating insights into the S-scheme transfer mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, W. H.; Mohamed, A. R.; Ong, W. J. Z-scheme photocatalytic systems for carbon dioxide reduction: Where are we now? Angew. Chem., Int. Ed. 2020, 59, 22894–22915.

    Article  CAS  Google Scholar 

  2. Navarro-Jaén, S.; Virginie, M.; Bonin, J.; Robert, M.; Wojcieszak, R.; Khodakov, A. Y. Highlights and challenges in the selective reduction of carbon dioxide to methanol. Nat. Rev. Chem. 2021, 5, 564–579.

    Article  Google Scholar 

  3. Yuan, L.; Qi, M. Y.; Tang, Z. R.; Xu, Y. J. Coupling strategy for CO2 valorization integrated with organic synthesis by heterogeneous photocatalysis. Angew. Chem., Int. Ed. 2021, 60, 21150–21172.

    Article  CAS  Google Scholar 

  4. Bellardita, M.; Loddo, V.; Parrino, F.; Palmisano, L. (Photo)electrocatalytic versus heterogeneous photocatalytic carbon dioxide reduction. ChemPhotoChem 2021, 5, 767–2791.

    Article  CAS  Google Scholar 

  5. Hao, L.; Huang, H. W.; Zhang, Y. H.; Ma, T. Y. Oxygen vacant semiconductor photocatalysts. Adv. Funct. Mater. 2021, 31, 2100919.

    Article  CAS  Google Scholar 

  6. Peleyeju, M. G.; Viljoen, E. L. WO3-based catalysts for photocatalytic and photoelectrocatalytic removal of organic pollutants from waterv—A review. J. Water Process Eng. 2021, 40, 101930.

    Article  Google Scholar 

  7. Novak, T. G.; Kim, J.; DeSario, P. A.; Jeon, S. Synthesis and applications of WO3 nanosheets: The importance of phase, stoichiometry, and aspect ratio. Nanoscale Adv. 2021, 3, 5166–5182.

    Article  CAS  Google Scholar 

  8. Zhao, Y. X.; Zhang, S.; Shi, R.; Waterhouse, G. I. N.; Tang, J. W.; Zhang, T. R. Two-dimensional photocatalyst design: A critical review of recent experimental and computational advances. Mater. Today 2020, 34, 78–91.

    Article  CAS  Google Scholar 

  9. Guan, G. J.; Ye, E. Y.; You, M. L.; Li, Z. B. Hybridized 2D nanomaterials toward highly efficient photocatalysis for degrading pollutants: Current status and future perspectives. Small 2020, 16, 1907087.

    Article  CAS  Google Scholar 

  10. Liu, Y.; Yang, Y.; Liu, Q.; Li, Y.; Lin, J.; Li, W.; Li, J. The role of water in reducing WO3 film by hydrogen: Controlling the concentration of oxygen vacancies and improving the photoelectrochemical performance. J. Colloid Interface Sci. 2018, 512, 86–95.

    Article  CAS  Google Scholar 

  11. Zheng, Y.; Chen, G.; Yu, Y. G.; Hu, Y. D.; Feng, Y. J.; Sun, J. X. Urea-assisted synthesis of ultra-thin hexagonal tungsten trioxide photocatalyst sheets. J. Mater. Sci. 2015, 50, 8111–8119.

    Article  CAS  Google Scholar 

  12. Wang, H. N.; Zou, Y. H.; Sun, H. X.; Chen, Y.; Li, S. L.; Lan, Y. Q. Recent progress and perspectives in heterogeneous photocatalytic CO2 reduction through a solid-gas mode. Coord. Chem. Rev. 2021, 438, 213906.

    Article  CAS  Google Scholar 

  13. Xu, Q. L.; Zhang, L. Y.; Cheng, B.; Fan, J. J.; Yu, J. G. S-scheme heterojunction photocatalyst. Chem 2020, 6, 1543–1559.

    Article  CAS  Google Scholar 

  14. Fu, J. W.; Xu, Q. L.; Low, J.; Jiang, C. J.; Yu, J. G. Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst. Appl. Catal. B 2019, 243, 556–565.

    Article  CAS  Google Scholar 

  15. He, F.; Meng, A. Y.; Cheng, B.; Ho, W.; Yu, J. G. Enhanced photocatalytic H2-production activity of WO3/TiO2 step-scheme heterojunction by graphene modification. Chin. J. Catal. 2020, 41, 9–20.

    Article  CAS  Google Scholar 

  16. Jiang, S.; Cao, J.; Guo, M. N.; Cao, D. D.; Jia X. M.; Lin, H. L.; Chen, S. F. Novel S-scheme WO3/RP composite with outstanding overall water splitting activity for H2 and O2 evolution under visible light. Appl. Surf. Sci. 2021, 558, 149882.

    Article  CAS  Google Scholar 

  17. Zhou, L.; Li, Y. F.; Yang, S. J.; Zhang, M.; Wu, Z. S.; Jin, R. X.; Xing, Y. Preparation of novel 0D/2D Ag2WO4/WO3 step-scheme heterojunction with effective interfacial charges transfer for photocatalytic contaminants degradation and mechanism insight. Chem. Eng. J. 2021, 420, 130361.

    Article  CAS  Google Scholar 

  18. Mukhtar, F.; Munawar, T.; Nadeem, M. S.; Rehman, M. N. U.; Riaz, M.; Iqbal, F. Dual S-scheme heterojunction ZnO-V2O5-WO3 nanocomposite with enhanced photocatalytic and antimicrobial activity. Mater. Chem. Phys. 2021, 263, 124372.

    Article  CAS  Google Scholar 

  19. Xin, Y.; Yu, K. F.; Zhang, L. T.; Yang, Y. R.; Yuan, H. B.; Li, H. L.; Wang, L. B.; Zeng, J. Copper-based plasmonic catalysis: Recent advances and future perspectives. Adv. Mater. 2021, 33, 2008145.

    Article  CAS  Google Scholar 

  20. Liu, X. L.; Xiao, J.; Ma, S.; Shi, C. X.; Pan, L.; Zou, J. J. Review on bismuth-based photocatalyst for CO2 conversion. ChemNanoMat 2021, 7, 684–698.

    Article  CAS  Google Scholar 

  21. Li, C. L.; He, J. F.; Xiao, Y. Q.; Li, Y. B.; Delaunay, J. J. Earth-abundant Cu-based metal oxide photocathodes for photoelectrochemical water splitting. Eaergy Eavirna. Sci. 2020, 13, 3269–3306.

    CAS  Google Scholar 

  22. Gottesman, R.; Levine, I.; Schleuning, M.; Irani, R.; Abou-Ras, D.; Dittrich, T.; Friedrich, D. Van De Krol, R. Overcoming phase-purity challenges in complex metal oxide photoelectrodes: A case study of CuBi2O4. Adv. Eaergy Mater. 2021, 11, 2003474.

    Article  CAS  Google Scholar 

  23. Wu, S. S.; Yu, X.; Zhang, J. L.; Zhang, Y. M.; Zhu, Y.; Zhu, M. S. Construction of BiOCl/CuBi2O4 S-scheme heterojunction with oxygen vacancy for enhanced photocatalytic diclofenac degradation and nitric oxide removal. Chem. Eag. J. 2021, 411, 128555.

    CAS  Google Scholar 

  24. Wang, L. P.; Huang, T. T.; Yang, G. P.; Lu, C. Y.; Dong, F. L.; Li, Y. L.; Guan, W. S. The precursor-guided hydrothermal synthesis of CuBi2O4/WO3 heterostructure with enhanced photoactivity under simulated solar light irradiation and mechanism insight. J. Hazard. Mater. 2020, 381, 120956.

    Article  CAS  Google Scholar 

  25. Nishikawa, M.; Yuto, S.; Hasegawa, T.; Shiroishi, W.; Honghao, H.; Nakabayashi, Y.; Nosaka, Y.; Saito, N. Compositing effects of CuBi2O4 on visible-light responsive photocatalysts. Mater. Sci. Semicnad. Prncess. 2017, 57, 12–17.

    Article  CAS  Google Scholar 

  26. Shinde, P. S.; Peng, X. N.; Wang, J.; Ma, Y. X.; McNamara, L. E.; Hammer, N. I.; Gupta, A.; Pan, S. L. Rapid screening of photoanode materials using scanning photoelectrochemical microscopy technique and formation of Z-scheme solar water splitting system by coupling p- and n-type heterojunction photoelectrodes. ACS Appl. Eaergy Mater. 2018, 1, 2283–2294.

    Article  CAS  Google Scholar 

  27. Liu, Y. M.; Gong, Z. Y.; Lv, H.; Ren, H.; Xing, X. Y. Rational design of Au decorated Mn0.5Cd0.5S/WO3 step-scheme heterostructure with multichannel charge transfer and efficient H2 generation. Appl. Surf. Sci. 2020, 526, 146734.

    Article  CAS  Google Scholar 

  28. Du, X. Y.; Song, S.; Wang, Y. T.; Jin, W. F.; Ding, T.; Tian, Y.; Li, X. G. Facile one-pot synthesis of defect-engineered step-scheme WO3/g-C3N4 heterojunctions for efficient photocatalytic hydrogen production. Catal. Sci. Techanl. 2021, 11, 2734–2744.

    Article  CAS  Google Scholar 

  29. Wang, Z. L.; Chen, Y. F.; Zhang, L. Y.; Cheng, B.; Yu, J. G.; Fan, J. J. Step-scheme CdS/TiO2 nanocomposite hollow microsphere with enhanced photocatalytic CO2 reduction activity. J. Mater. Sci. Techanl. 2020, 56, 143–150.

    Article  CAS  Google Scholar 

  30. Majhi, D.; Mishra, A. K.; Das, K.; Bariki, R.; Mishra, B. G. Plasmonic Ag nanoparticle decorated Bi2O3/CuBi2O4 photocatalyst for expeditious degradation of 17α-ethinylestradiol and Cr(VI) reduction: Insight into electron transfer mechanism and enhanced photocatalytic activity. Chem. Eag. J. 2021, 413, 127506.

    CAS  Google Scholar 

  31. Sayed, M.; Xu, F. Y.; Kuang, P. Y.; Low, J.; Wang, S. Y.; Zhang, L. Y.; Yu, J. G. Sustained CO2-photoreduction activity and high selectivity over Mn, C-codoped ZnO core-triple shell hollow spheres. Nat. Cnmmua. 2021, 12, 4936.

    CAS  Google Scholar 

  32. Lin, H.; Luo, S.; Zhang, H.; Ye, J. Toward solar-driven carbon recycling. Joule 2022, 6, 294–314.

    Article  CAS  Google Scholar 

  33. Yuan, X. J.; Shen, D. Y.; Zhang, Q.; Zou, H. B.; Liu, Z. L.; Peng, F. Z-scheme Bi2WO6/CuBi2O4 heterojunction mediated by interfacial electric field for efficient visible-light photocatalytic degradation of tetracycline. Chem. Eag. J. 2019, 369, 292–301.

    CAS  Google Scholar 

  34. Cui, D. D.; Hao, W. C.; Chen, J. The synergistic effect of heteroatom doping and vacancy on the reduction of CO2 by photocatalysts. ChemNanoMat 2021, 7, 894–901.

    Article  CAS  Google Scholar 

  35. Xu, F. Y.; Meng, K.; Cheng, B.; Wang, S. Y.; Xu, J. S.; Yu, J. G. Unique S-scheme heterojunctions in selfassembled TiO2/CsPbBr3 hybrids for CO2 photoreduction. Nat. Cnmmua. 2020, 11, 4613.

    CAS  Google Scholar 

  36. Oropeza, F. E.; Dzade, N. Y.; Pons-Martí, A.; Yang, Z. N.; Zhang, K. H. L.; De Leeuw, N. H.; Hensen, E. J. M.; Hofmann, J. P. Electronic structure and interface energetics of CuBi2O4 photoelectrodes. J. Phys. Chem. C 2020, 124, 22416–22425.

    Article  CAS  Google Scholar 

  37. Zhang, L. W.; Long, R.; Zhang, Y. M.; Duan, D. L.; Xiong, Y. J.; Zhang, Y. J.; Bi, Y. P. Direct observation of dynamic bond evolution in single-atom Pt/C3N4 catalysts. Aagew. Chem., Int. Ed. 2020, 59, 6224–6229.

    Article  CAS  Google Scholar 

  38. Wang, L. B.; Cheng, B.; Zhang, L. Y.; Yu, J. G. Ia situ irradiated XPS investigation on S-scheme TiO2@ZnIn2S4 photocatalyst for efficient photocatalytic CO2 reduction. Small 2021, 17, 2103447.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the financial supports of National Natural Science Foundation of China (Nos. 51802082 and 51903073), Natural Science Foundation of Henan Province (No. 212300410221), Program for Science & Technology Innovation Talents in Universities of Henan Province (No. 21HATIT016), Key Scientific Research Project of Colleges and Universities in Henan Province (Nos. 21A430030 and 20A150017), Key Scientific and Technological Project of Henan Province (Nos. 222102320100, 212102210473, and 212102210178), National College Student Innovantion and Entrepreneurship Training (No. 202110467024), and “Climbing” Project of Henan Institute of Science and Technology (No. 2018CG04).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ji-Chao Wang or Huijuan Han.

Electronic Supplementary Material

12274_2022_4271_MOESM1_ESM.pdf

Controllable synthesized step-scheme heterojunction of CuBi2O4 decorated WO3 plates for visible-light-driven CO2 reduction

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, W., Wang, JC., Guo, X. et al. Controllable synthesized step-scheme heterojunction of CuBi2O4 decorated WO3 plates for visible-light-driven CO2 reduction. Nano Res. 15, 5962–5969 (2022). https://doi.org/10.1007/s12274-022-4271-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4271-0

Keywords

Navigation