Skip to main content
Log in

Layered double hydroxide nanosheets activate CsPbBr3 nanocrystals for enhanced photocatalytic CO2 reduction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Halide perovskite nanocrystals are potential catalysts for CO2 photoreduction, while, the strong radiative recombination and insufficient stability limit their catalytic performance and application. Herein, we report that layered double hydroxide nanosheets activate CsPbBr3 nanocrystals (CLDH) for enhanced photocatalytic CO2 reduction. These CLDH heterojunctions show the remarkably enhanced CO2 photoreduction performance; without cocatalyst and sacrificial agent, the average electron consumption rate of CLDH (49.16 μmol·g−1·h−1) is approximately 3.7 times higher than that of pristine CsPbBr3. Also, CLDH catalyst exhibits a robust stability after ten cycles over 30 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lin, Y. H.; Sakai, N.; Da, P. M.; Wu, J. Y.; Sansom, H. C.; Ramadan, A. J.; Mahesh, S.; Liu, J. L.; Oliver, R. D. J.; Lim, J. et al. A piperidinium salt stabilizes efficient metal-halide perovskite solar cells. Science 2020, 369, 96–102.

    CAS  Google Scholar 

  2. Ye, J. Z.; Byranvand, M. M.; Martinez, C. O.; Hoye, R. L. Z.; Saliba, M.; Polavarapu, L. Defect passivation in lead-halide perovskite nanocrystals and thin films: Toward efficient LEDs and solar cells. Angew. Chem., Int. Ed. 2021, 60, 21636–21660.

    CAS  Google Scholar 

  3. Fu, Y. P.; Zhu, H. M.; Chen, J.; Hautzinger, M. P.; Zhu, X. Y.; Jin, S. Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties. Nat. Rev. Mater. 2019, 4, 169–188.

    CAS  Google Scholar 

  4. Wang, R.; Huang, T. Y.; Xue, J. J.; Tong, J. H.; Zhu, K.; Yang, Y. Prospects for metal halide perovskite-based tandem solar cells. Nat. Photonics 2021, 15, 411–425.

    CAS  Google Scholar 

  5. Chen, B.; Fei, C. B.; Chen, S. S.; Gu, H. Y.; Xiao, X.; Huang, J. S. Recycling lead and transparent conductors from perovskite solar modules. Nat. Commun. 2021, 12, 5859.

    CAS  Google Scholar 

  6. Liu, P. Y.; Han, N.; Wang, W.; Ran, R.; Zhou, W.; Shao, Z. P. High-quality ruddlesden-popper perovskite film formation for highperformance perovskite solar cells. Adv. Mater. 2021, 33, 2002582.

    CAS  Google Scholar 

  7. Liu, C.; Igci, C.; Yang, Y.; Syzgantseva O. A.; Syzgantseva M. A.; Rakstys, K.; Kanda, H.; Shibayama, N.; Ding, B.; Zhang, X. F. et al. Dopant-free hole transport materials afford efficient and stable inorganic perovskite solar cells and modules. Angew. Chem., Int. Ed. 2021, 60, 20489–20497.

    CAS  Google Scholar 

  8. Wolff, C. M.; Canil, L.; Rehermann, C.; Linh, N. N.; Zu, F. S.; Ralaiarisoa, M.; Caprioglio, P.; Fiedler, L.; Stolterfoht, M.; Kogikoski, S. et al. Perfluorinated self-assembled monolayers enhance the stability and efficiency of inverted perovskite solar cells. ACS Nano 2020, 14, 1445–1456.

    CAS  Google Scholar 

  9. Liu, X. X.; Wu, Z. Z.; Fu, X. X.; Tang, L. T.; Li, J. M.; Gong, J. B.; Xiao, X. D. Highly efficient wide-band-gap perovskite solar cells fabricated by sequential deposition method. Nat. Energy 2021, 86, 106114.

    CAS  Google Scholar 

  10. Liang, S.; Zhang, M. Y.; Biesold, G. M.; Choi, W.; He, Y. J.; Li, Z. L.; Shen, D. F.; Lin, Z. Q. Recent advances in synthesis, properties, and applications of metal halide perovskite nanocrystals/polymer nanocomposites. Adv. Mater. 2021, 33, 2005888.

    CAS  Google Scholar 

  11. Yang, T.; Zheng, Y. P.; Du, Z. T.; Liu, W. N.; Yang, Z. B.; Gao, F. M.; Wang, L.; Chou, K. C.; Hou, X. M.; Yang, W. Y. Superior photodetectors based on all-inorganic perovskite CsPbI3 nanorods with ultrafast response and high stability. ACS Nano 2018, 12, 1611–1617.

    CAS  Google Scholar 

  12. Xu, Y. F.; Yang, M. Z.; Chen, B. X.; Wang, X. D.; Chen, H. Y.; Kuang, D. B.; Su, C. Y. A CsPbBr3 perovskite quantum dot/graphene oxide composite for photocatalytic CO2 reduction. J. Am. Chem. Soc. 2017, 139, 5660–5663.

    CAS  Google Scholar 

  13. Wang, J. C.; Wang, J.; Li, N. Y.; Du, X. Y.; Ma, J.; He, C. H.; Li, Z. Q. Direct Z-scheme 0D/2D heterojunction of CsPbBr3 quantum dots/Bi2WO6 nanosheets for efficient photocatalytic CO2 reduction. ACS Appl. Mater. Interfaces 2020, 12, 31477–31485.

    CAS  Google Scholar 

  14. Wei, J. J.; Zheng, W.; Huang, P.; Gong, Z. L.; Liu, Y.; Lu, S.; Li, Z.; Chen, X. Y. Direct photoinduced synthesis of lead halide perovskite nanocrystals and nanocomposites. Nano Today 2021, 39, 101179.

    CAS  Google Scholar 

  15. Chen, Y. H.; Ye, J. K.; Chang, Y. J.; Liu, T. W.; Chuang, Y. H.; Liu, W. R.; Liu, S. H.; Pu, Y. C. Mechanisms behind photocatalytic CO2 reduction by CsPbBr3 perovskite-graphene-based nanoheterostructures. Appl. Catal. B:Environ. 2021, 284, 119751.

    CAS  Google Scholar 

  16. Huang, H. W.; Pradhan, B.; Hofkens, J.; Roeffaers, M. B. J.; Steele, J. A. Solar-driven metal halide perovskite photocatalysis: Design, stability, and performance. ACS Energy Lett. 2020, 5, 1107–1123.

    CAS  Google Scholar 

  17. Chong, R. F.; Su, C. H.; Du, Y. Q.; Fan, Y. Y.; Ling, Z.; Chang, Z. X.; Li, D. L. Insights into the role of MgAl layered double oxides interlayer in Pt/TiO2 toward photocatalytic CO2 reduction. J. Catal. 2018, 363, 92–101.

    CAS  Google Scholar 

  18. Tan, L.; Wang, Z. L.; Zhao, Y. F.; Song, Y. F. Recent progress on nanostructured layered double hydroxides for visible-light-induced photoreduction of CO2. Chem. Asian J. 2020, 15, 3380–3389.

    CAS  Google Scholar 

  19. Kumar, S.; Isaacs, M. A.; Trofimovaite, R.; Durndell, L.; Parlett, C. M. A.; Douthwaite, R. E.; Coulson, B.; Cockett, M. C. R.; Wilson, K.; Lee, A. F. P25@CoAl layered double hydroxide heterojunction nanocomposites for CO2 photocatalytic reduction. Appl. Catal. B:Environ. 2017, 209, 394–404.

    CAS  Google Scholar 

  20. Jiang, H. Y.; Katsumata, K. I.; Hong, J.; Yamaguchi, A.; Nakata, K.; Terashima, C.; Matsushita, N.; Miyauchi, M.; Fujishima, A. Photocatalytic reduction of CO2 on Cu2O-loaded Zn-Cr layered double hydroxides. Appl. Catal. B:Environ. 2018, 224, 783–790.

    CAS  Google Scholar 

  21. Zhang, T. T.; Shang, H. S.; Zhang, B.; Yan, D. P.; Xiang, X. Ag/ultrathin-layered double hydroxide nanosheets induced by a self-redox strategy for highly selective CO2 reduction. ACS Appl. Mater. Interfaces 2021, 13, 16536–16544.

    CAS  Google Scholar 

  22. Zhao, S.; Pan, D.; Liang, Q.; Zhou, M.; Yao, C.; Xu, S.; Li, Z. Y. Ultrathin NiAl-layered double hydroxides grown on 2D Ti3C2Tx MXene to construct core—shell heterostructures for enhanced photocatalytic CO2 reduction. J. Phys. Chem. C 2021, 125, 10207–10218.

    CAS  Google Scholar 

  23. Shi, Q. R.; Zhang, X. Y.; Yang, Y.; Huang, J. J.; Fu, X. L.; Wang, T. Y.; Liu, X. D.; Sun, A. W.; Ge, J. H.; Shen, J. Y. et al. 3D hierarchical architecture collaborating with 2D/2D interface interaction in NiAl-LDH/Ti3C2 nanocomposite for efficient and selective photoconversion of CO2. J. Energy Chem. 2021, 59, 9–18.

    CAS  Google Scholar 

  24. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    CAS  Google Scholar 

  25. Langreth, D. C.; Mehl, M. J. Beyond the local-density approximation in calculations of ground-state electronic properties. Phys. Rev. B 1983, 28, 1809–1834.

    CAS  Google Scholar 

  26. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    CAS  Google Scholar 

  27. Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

    Google Scholar 

  28. Tonda, S.; Kumar, S.; Bhardwaj, M.; Yadav, P.; Ogale, S. g-C3N4/NiAl-LDH 2D/2D hybrid heterojunction for high-performance photocatalytic reduction of CO2 into renewable fuels. ACS Appl. Mater. Interfaces 2018, 10, 2667–2678.

    CAS  Google Scholar 

  29. Gao, G.; Xi, Q. Y.; Zhou, H.; Zhao, Y. X.; Wu, C. Q.; Wang, L. D.; Guo, P. R.; Xu, J. W. Novel inorganic perovskite quantum dots for photocatalysis. Nanoscale 2017, 9, 12032–12038.

    CAS  Google Scholar 

  30. Wan, S. P.; Ou, M.; Zhong, Q.; Wang, X. M. Perovskite-type CsPbBr3 quantum dots/UiO-66(NH2) nanojunction as efficient visible-light-driven photocatalyst for CO2 reduction. Chem. Eng. J. 2019, 358, 1287–1295.

    CAS  Google Scholar 

  31. Jo, W. K.; Moru, S.; Tonda, S. A green approach to the fabrication of a TiO2/NiAl-LDH core—shell hybrid photocatalyst for efficient and selective solar-powered reduction of CO2 into value-added fuels. J. Mater. Chem. A 2020, 8, 8020–8032.

    CAS  Google Scholar 

  32. Megala, S.; Sathish, M.; Harish, S.; Navaneethan, M.; Sohila, S.; Liang, B.; Ramesh, R. Enhancement of photocatalytic H2 evolution from water splitting by construction of two dimensional gC3N4/NiAl layered double hydroxides. Appl. Surf. Sci. 2020, 509, 144656.

    CAS  Google Scholar 

  33. Shu, M. Y.; Zhang, Z. J.; Dong, Z. L.; Xu, J. Y. CsPbBr3 perovskite quantum dots anchored on multiwalled carbon nanotube for efficient CO2 photoreduction. Carbon 2021, 182, 454–462.

    CAS  Google Scholar 

  34. Xu, F. Y.; Meng, K.; Cheng, B.; Wang, S. Y.; Xu, J. S.; Yu, J. G. Unique S-scheme heterojunctions in self-assembled TiO2/CsPbBr3 hybrids for CO2 photoreduction. Nat. Commun. 2020, 11, 4613.

    CAS  Google Scholar 

  35. Zhang, Z. J.; Shu, M. Y.; Jiang, Y.; Xu, J. Y. Fullerene modified CsPbBr3 perovskite nanocrystals for efficient charge separation and photocatalytic CO2 reduction. Chem. Eng. J. 2021, 414, 128889.

    CAS  Google Scholar 

  36. Jo, W. K.; Kim, Y. G.; Tonda, S. Hierarchical flower-like NiAl-layered double hydroxide microspheres encapsulated with black Cu-doped TiO2 nanoparticles: Highly efficient visible-light-driven composite photocatalysts for environmental remediation. J. Hazard. Mater. 2018, 357, 19–29.

    CAS  Google Scholar 

  37. Wang, X. D.; He, J.; Li, J. Y.; Lu, G.; Dong, F.; Majima, T.; Zhu, M. S. Immobilizing perovskite CsPbBr3 nanocrystals on black phosphorus nanosheets for boosting charge separation and photocatalytic CO2 reduction. Appl. Catal. B:Environ. 2020, 277, 119230.

    CAS  Google Scholar 

  38. Xu, X. F.; Shi, S. H.; Tang, Y. L.; Wang, G. Z.; Zhou, M. F.; Zhao, G. Q.; Zhou, X. C.; Lin, S. W.; Meng, F. B. Growth of NiAl-layered double hydroxide on graphene toward excellent anticorrosive microwave absorption application. Adv. Sci. 2021, 8, 2002658.

    CAS  Google Scholar 

  39. Wang, X. D.; He, J.; Mao, L.; Cai, X. Y.; Sun, C. Z.; Zhu, M. S. CsPbBr3 perovskite nanocrystals anchoring on monolayer MoS2 nanosheets for efficient photocatalytic CO2 reduction. Chem. Eng. J. 2021, 416, 128077.

    CAS  Google Scholar 

  40. Wei, Y.; Cheng, G.; Xiong, J. Y.; Xu, F. F.; Chen, R. Positive Ni(HCO3)2 as a novel cocatalyst for boosting the photocatalytic hydrogen evolution capability of mesoporous TiO2 nanocrystals. ACS Sustainable Chem. Eng. 2017, 5, 5027–5038.

    CAS  Google Scholar 

  41. Zhang, D. X.; Dong, W. X.; Liu, Y. H.; Gu, X. Q.; Yang, T. Y.; Hong, Q.; Li, D.; Zhang, D. Q.; Zhou, H. B.; Huang, H. et al. Ag-In-Zn-S quantum dot-dominated interface kinetics in Ag-In-Zn-S/NiFe LDH composites toward efficient photoassisted electrocatalytic water splitting. ACS Appl. Mater. Interfaces 2021, 13, 42125–42137.

    CAS  Google Scholar 

  42. Tao, X. P.; Wang, Y.; Qu, J. S.; Zhao, Y.; Li, R. G.; Li, C. Achieving selective photocatalytic CO2 reduction to CO on bismuth tantalum oxyhalogen nanoplates. J. Mater. Chem. A 2021, 9, 19631–19636.

    CAS  Google Scholar 

  43. Wang, F. L.; Hou, T. T.; Zhao, X.; Yao, W.; Fang, R. Q.; Shen, K.; Li, Y. W. Ordered macroporous carbonous frameworks implanted with CdS quantum dots for efficient photocatalytic CO2 reduction. Adv. Mater. 2021, 33, 2102690.

    CAS  Google Scholar 

  44. Ran, J. R.; Gao, G. P.; Li, F. T.; Ma, T. Y.; Du, A. J.; Qiao, S. Z. Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nat. Commun. 2017, 8, 13907.

    CAS  Google Scholar 

  45. Liang, Q.; Liu, L. J.; Wu, Z. Y.; Nie, H. D.; Shi, H.; Li, Z. Y.; Kang, Z. H. Polytriptycene@CdS double shell hollow spheres with enhanced interfacial charge transfer for highly efficient photocatalytic hydrogen evolution. J. Mater. Chem. A 2021, 9, 9105–9112.

    CAS  Google Scholar 

  46. Li, Q.; Wang, S. C.; Sun, Z. X.; Tang, Q. J.; Liu, Y. Q.; Wang, L. Z.; Wang, H. Q.; Wu, Z. B. Enhanced CH4 selectivity in CO2 photocatalytic reduction over carbon quantum dots decorated and oxygen doping g-C3N4. Nano Res. 2019, 12, 2749–2759.

    CAS  Google Scholar 

  47. Lin, J.; Dong, Y. Z.; Zhang, Q.; Hu, D. D.; Li, N.; Wang, L.; Liu, Y.; Wu, T. Interrupted chalcogenide-based zeolite-analogue semiconductor: Atomically precise doping for tunable electro/photoelectrochemical properties. Angew. Chem., Int. Ed. 2015, 54, 5103–5107.

    CAS  Google Scholar 

  48. Saha, S.; Das, G.; Thote, J.; Banerjee, R. Photocatalytic metal-organic framework from CdS quantum dot incubated luminescent metallohydrogel. J. Am. Chem. Soc. 2014, 136, 14845–14851.

    CAS  Google Scholar 

  49. Jia, Y. F.; Li, S. P.; Gao, J. Z.; Zhu, G. Q.; Zhang, F. C.; Shi, X. J.; Huang, Y.; Liu, C. L. Highly efficient (BiO)2CO3-BiO2−x-graphene photocatalysts: Z-scheme photocatalytic mechanism for their enhanced photocatalytic removal of NO. Appl. Catal. B:Environ. 2019, 240, 241–252.

    CAS  Google Scholar 

  50. Li, X. Z.; Shi, H. Y.; Zuo, S. X.; Gao, B. Y.; Han, C. Y.; Wang, T. S.; Yao, C.; Ni, C. Y. Lattice reconstruction of one-dimensional mineral to achieve dendritic heterojunction for cost-effective nitrogen photofixation. Chem. Eng. J. 2021, 414, 128797.

    CAS  Google Scholar 

  51. Hussain, M.; Rashid, M.; Saeed, F.; Bhatti, A. S. Spin—orbit coupling effect on energy level splitting and band structure inversion in CsPbBr3. J. Mater. Sci. 2021, 56, 528–542.

    CAS  Google Scholar 

  52. Li, S. Q.; Jin, Z. Q.; Lai, W. S.; Zhang, H. Y.; Wang, D.; Song, S.; Zeng, T. Alkali and donor—acceptor bridged three-dimensional interpenetrating polymer networks boost photocatalytic performance by efficient electron delocalization and charge transfer. Appl. Catal. B:Environ. 2021, 292, 120153.

    CAS  Google Scholar 

  53. Huang, Z. F.; Song, J. J.; Wang, X.; Pan, L.; Li, K.; Zhang, X. W.; Wang, L.; Zou, J. J. Switching charge transfer of C3N4/W18O49 from type-II to Z-scheme by interfacial band bending for highly efficient photocatalytic hydrogen evolution. Nano Energy 2017, 40, 308–316.

    CAS  Google Scholar 

  54. Zhang, L. X.; Feng, L. P.; Li, P.; Chen, X.; Gao, Y.; Gong, Y. S.; Du, Z. L.; Zhang, S.; Zhang, A. C.; Chen, G. F. et al. Plasma-assisted doping of nitrogen into cobalt sulfide for loading cadmium sulfide: A direct Z-scheme heterojunction for efficiently photocatalytic Cr(VI) reduction under visible light. Chem. Eng. J. 2021, 417, 129222.

    CAS  Google Scholar 

  55. Zuo, G. C.; Wang, Y. T.; Teo, W. L.; Xian, Q. M.; Zhao, Y. L. Direct Z-scheme TiO2-ZnIn2S4 nanoflowers for cocatalyst-free photocatalytic water splitting. Appl. Catal. B:Environ. 2021, 291, 120126.

    CAS  Google Scholar 

  56. Stolarczyk, J. K.; Bhattacharyya, S.; Polavarapu, L.; Feldmann, J. Challenges and prospects in solar water splitting and CO2 reduction with inorganic and hybrid nanostructures. ACS Catal. 2018, 8, 3602–3635.

    CAS  Google Scholar 

  57. Zhou, H.; Li, P.; Liu, J.; Chen, Z. P.; Liu, L. Q.; Dontsova, D.; Yan, R. Y.; Fan, T. X.; Zhang, D.; Ye, J. H. Biomimetic polymeric semiconductor based hybrid nanosystems for artificial photosynthesis towards solar fuels generation via CO2 reduction. Nano Energy 2016, 25, 128–135.

    CAS  Google Scholar 

  58. Han, C. Q.; Zhang, R. M.; Ye, Y. H.; Wang, L.; Ma, Z. Y.; Su, F. Y.; Xie, H. Q.; Zhou, Y.; Wong, P. K.; Ye, L. Q. Chainmail co-catalyst of NiO shell-encapsulated Ni for improving photocatalytic CO2 reduction over g-C3N4. J. Mater. Chem. A 2019, 7, 9726–9735.

    CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by National Key Basic Research Program of China (Nos. 2020YFA0406104 and 2020YFA0406101), National MCF Energy R&D Program (No. 2018YFE0306105), Innovative Research Group Project of the National Natural Science Foundation of China (No. 51821002), National Natural Science Foundation of China (Nos. 51725204, 21771132, 21471106, and 51972216), Natural Science Foundation of Jiangsu Province (No. BK20190041), Natural Science Foundation of Jiangsu Province-Excellent Youth Foundation (No. BK20190102), Key-Area Research and Development Program of GuangDong Province (No. 2019B010933001), Collaborative Innovation Center of Suzhou Nano Science & Technology, the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the 111 Project, and Suzhou Key Laboratory of Functional Nano & Soft Materials.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qian Liang or Hui Huang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, S., Liang, Q., Li, Z. et al. Layered double hydroxide nanosheets activate CsPbBr3 nanocrystals for enhanced photocatalytic CO2 reduction. Nano Res. 15, 5953–5961 (2022). https://doi.org/10.1007/s12274-022-4268-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4268-8

Keywords

Navigation