Skip to main content
Log in

Tailoring activation sites of metastable distorted 1T′-phase MoS2 by Ni doping for enhanced hydrogen evolution

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Heteroatom doping is a promising approach to enhance catalytic activity by modulating physical properties, electronic structure, and reaction pathway. Herein, we demonstrate that appropriate Ni-doping could trigger a preferential transition of the basal plane from 2H (trigonal prismatic) to 1T′ (clustered Mo) by inducing lattice distortion and S vacancy (SV) and thus dramatically facilitate its catalytic hydrogen evolution activity. It is noteworthy that the unique catalysts did possess superior catalytic performance of hydrogen evolution reaction (HER). The rate of photocatalytic hydrogen evolution could reach 20.45 mmol·g−1·h−1 and reduced only slightly in the long period of the photocatalytic process. First-principles calculations reveal that the distorted Ni-1T′-MoS2 with SV could generate favorable water adsorption energy (Ead(H2O)) and Gibbs free energy of hydrogen adsorption (ΔGH). This work exhibits a facile and promising pathway for synergistically regulating physical properties, electronic structure, or wettability based on the doping strategy for designing HER electrocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, Y.; Gu, Q. F.; Johannessen, B.; Zheng, Z.; Li, C.; Luo, Y. T.; Zhang, Z. Y.; Zhang, Q.; Fan, H. N.; Luo, W. B. et al. Synergistic Pt doping and phase conversion engineering in two-dimensional MoS2 for efficient hydrogen evolution. Nano Energy 2021, 84, 105898.

    CAS  Google Scholar 

  2. Zhang, C.; Luo, Y. T.; Tan, J. Y.; Yu, Q. M.; Yang, F. N.; Zhang, Z. Y.; Yang, L. S.; Cheng, H. M.; Liu, B. L. High-throughput production of cheap mineral-based two-dimensional electrocatalysts for high-current-density hydrogen evolution. Nat. Commun. 2020, 11, 3724.

    CAS  Google Scholar 

  3. Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater., in press, https://doi.org/10.1016/j.apmate.2021.10.004.

  4. Xia, Z. H.; Guo, S. J. Strain engineering of metal-based nanomaterials for energy electrocatalysis. Chem. Soc. Rev. 2019, 48, 3265–3278.

    CAS  Google Scholar 

  5. Xu, X.; Liang, T.; Kong, D.; Wang, B.; Zhi, L. Strain engineering of two-dimensional materials for advanced electrocatalysts. Mater. Today Nano 2021, 14, 100111.

    CAS  Google Scholar 

  6. Liu, Z. H.; Du, Y.; Zhang, P. F.; Zhuang, Z. C.; Wang, D. S. Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon. Matter 2021, 4, 3161–3194.

    CAS  Google Scholar 

  7. Wang, Q.; Zhao, Z. L.; Dong, S.; He, D. S.; Lawrence, M. J.; Han, S. B.; Cai, C.; Xiang, S. H.; Rodriguez, P.; Xiang, B. et al. Design of active nickel single-atom decorated MoS2 as a pH-universal catalyst for hydrogen evolution reaction. Nano Energy 2018, 53, 458–467.

    CAS  Google Scholar 

  8. Huang, Y. C.; Sun, Y. H.; Zheng, X. L.; Aoki, T.; Pattengale, B.; Huang, J. E.; He, X.; Bian, W.; Younan, S.; Williams, N. et al. Atomically engineering activation sites onto metallic 1T-MoS2 catalysts for enhanced electrochemical hydrogen evolution. Nat. Commun. 2019, 10, 982.

    CAS  Google Scholar 

  9. Pattengale, B.; Huang, Y. C.; Yan, X. X.; Yang, S. Z.; Younan, S.; Hu, W. H.; Li, Z. D.; Lee, S.; Pan, X. Q.; Gu, J. et al. Dynamic evolution and reversibility of single-atom Ni(II) active site in 1T-MoS2 electrocatalysts for hydrogen evolution. Nat. Commun. 2020, 11, 4114.

    CAS  Google Scholar 

  10. Ji, X. X.; Lin, Y. H.; Zeng, J.; Ren, Z. H.; Lin, Z. J.; Mu, Y. B.; Qiu, Y. J.; Yu, J. Graphene/MoS2/FeCoNi(OH)x and Graphene/MoS2/FeCoNiPx multilayer-stacked vertical nanosheets on carbon fibers for highly efficient overall water splitting. Nat. Commun. 2021, 12, 1380.

    CAS  Google Scholar 

  11. Zhuang, Z. C.; Li, Y.; Li, Y. H.; Huang, J. Z.; Wei, B.; Sun, R.; Ren, Y. J.; Ding, J.; Zhu, J. X.; Lang, Z. Q. et al. Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy Environ. Sci. 2021, 14, 1016–1028.

    CAS  Google Scholar 

  12. Liu, G. L.; Robertson, A. W.; Li, M. M. J.; Kuo, W. C. H.; Darby, M. T.; Muhieddine, M. H.; Lin, Y. C.; Suenaga, K.; Stamatakis, M.; Warner, J. H. et al. MoS2 monolayer catalyst doped with isolated Co atoms for the hydrodeoxygenation reaction. Nat. Chem. 2017, 9, 810–816.

    CAS  Google Scholar 

  13. Sun, Y. Q.; Li, X. L.; Zhang, T.; Xu, K.; Yang, Y. S.; Chen, G. Z.; Li, C. C.; Xie, Y. Nitrogen-incorporated cobalt diselenide with cubic phase maintaining for enhanced alkaline hydrogen evolution. Angew. Chem., Int. Ed. 2021, 60, 21575–21582.

    CAS  Google Scholar 

  14. Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

    CAS  Google Scholar 

  15. Wang, L. L.; Xie, L. B.; Zhao, W. W.; Liu, S. J.; Zhao, Q. Oxygen-facilitated dynamic active-site generation on strained MoS2 during photo-catalytic hydrogen evolution. Chem. Eng. J. 2021, 405, 127028.

    CAS  Google Scholar 

  16. Cai, J. L.; Ding, J.; Wei, D. H.; Xie, X.; Li, B. J.; Lu, S. Y.; Zhang, J. M.; Liu, Y. S.; Cai, Q.; Zang, S. Q. Coupling of Ru and O-vacancy on 2D Mo-based electrocatalyst via a solid-phase interface reaction strategy for hydrogen evolution reaction. Adv. Energy Mater. 2021, 11, 2100141.

    CAS  Google Scholar 

  17. Zhang, A.; Liang, Y. X.; Zhang, H.; Geng, Z. G.; Zeng, J. Doping regulation in transition metal compounds for electrocatalysis. Chem. Soc. Rev. 2021, 50, 9817–9844.

    CAS  Google Scholar 

  18. Tang, Q.; Jiang, D. E. Mechanism of hydrogen evolution reaction on 1T-MoS2 from first principles. ACS Catal. 2016, 6, 4953–4961.

    CAS  Google Scholar 

  19. Miao, J. W.; Xiao, F. X.; Yang, H. B.; Khoo, S. Y.; Chen, J. Z.; Fan, Z. X.; Hsu, Y. Y.; Chen, H. M.; Zhang, H.; Liu, B. Hierarchical Ni-Mo-S nanosheets on carbon fiber cloth: A flexible electrode for efficient hydrogen generation in neutral electrolyte. Sci. Adv. 2015, 7, e1500259.

    Google Scholar 

  20. Yin, Y.; Zhang, Y. M.; Gao, T. L.; Yao, T.; Zhang, X. H.; Han, J. C.; Wang, X. J.; Zhang, Z. H.; Xu, P.; Zhang, P. et al. Synergistic phase and disorder engineering in 1T-MoSe2 nanosheets for enhanced hydrogen-evolution reaction. Adv. Mater. 2017, 29, 1700311.

    Google Scholar 

  21. Chou, S. S.; Sai, N.; Lu, P.; Coker, E. N.; Liu, S.; Artyushkova, K.; Luk, T. S.; Kaehr, B.; Brinker, C. J. Understanding catalysis in a multiphasic two-dimensional transition metal dichalcogenide. Nat. Commun. 2015, 6, 8311.

    CAS  Google Scholar 

  22. Eda, G.; Fujita, T.; Yamaguchi, H.; Voiry, D.; Chen, M. W.; Chhowalla, M. Coherent atomic and electronic heterostructures of single-layer MoS2. ACS Nano 2012, 6, 7311–7317.

    CAS  Google Scholar 

  23. Wang, S. H.; Wang, L. L.; Xie, L. B.; Zhao, W. W.; Liu, X.; Zhuang, Z. C.; Zhuang, Y. L.; Chen, J.; Liu, S. J.; Zhao, Q. Dislocation-strained MoS2 nanosheets for high-efficiency hydrogen evolution reaction. Nano Res., in press, https://doi.org/10.1007/s12274-022-4158-0.

  24. Han, A. L.; Zhou, X. F.; Wang, X. J.; Liu, S.; Xiong, Q. H.; Zhang, Q. H.; Gu, L.; Zhuang, Z. C.; Zhang, W. J.; Li, F. X. et al. One-step synthesis of single-site vanadium substitution in 1T-WS2 monolayers for enhanced hydrogen evolution catalysis. Nat. Commun. 2021, 12, 709.

    CAS  Google Scholar 

  25. Han, Y. X.; Kong, C.; Hou, L. J.; Wu, B. W.; Zhang, Q.; Geng, Z. Y. Theoretical research on the effect of eosin Y adsorption action on Ru4 and Pt4 clusters on the hydrogen evolution performance. Comput. Theor. Chem. 2018, 1142, 15–20.

    CAS  Google Scholar 

  26. Zhang, J. M.; Xu, X. P.; Yang, L.; Cheng, D. J.; Cao, D. P. Singleatom Ru doping induced phase transition of MoS2 and S vacancy for hydrogen evolution reaction. Small Methods 2019, 3, 1900653.

    CAS  Google Scholar 

  27. Lai, Z. C.; He, Q. Y.; Tran, T. H.; Repaka, D. V. M.; Zhou, D. D.; Sun, Y.; Xi, S. B.; Li, Y. X.; Chaturvedi, A.; Tan, C. L. et al. Metastable 1T′-phase group VIB transition metal dichalcogenide crystals. Nat. Mater. 2021, 20, 1113–1120.

    CAS  Google Scholar 

  28. Ekspong, J.; Sandström, R.; Rajukumar, L. P.; Terrones, M.; Wågberg, T.; Gracia-Espino, E. Stable sulfur-intercalated 1T′ MoS2 on graphitic nanoribbons as hydrogen evolution electrocatalyst. Adv. Funct. Mater. 2018, 28, 1802744.

    Google Scholar 

  29. Chen, X. Y.; Wang, Z. M.; Wei, Y. Z.; Zhang, X.; Zhang, Q. H.; Gu, L.; Zhang, L. J.; Yang, N. L.; Yu, R. B. High phase-purity 1T-MoS2 ultrathin nanosheets by a spatially confined template. Angew. Chem., Int. Ed. 2019, 58, 17621–17624.

    CAS  Google Scholar 

  30. Cao, D. F.; Ye, K.; Moses, O. A.; Xu, W. J.; Liu, D. B.; Song, P.; Wu, C. Q.; Wang, C. D.; Ding, S. Q.; Chen, S. M. et al. Engineering the in-plane structure of metallic phase molybdenum disulfide via Co and O dopants toward efficient alkaline hydrogen evolution. ACS Nano 2019, 13, 11733–11740.

    CAS  Google Scholar 

  31. Gao, B.; Zhao, Y. W.; Du, X. Y.; Li, D.; Ding, S. J.; Li, Y. H.; Xiao, C. H.; Song, Z. X. Electron injection induced phase transition of 2H to 1T MoS2 by cobalt and nickel substitutional doping. Chem. Eng. J. 2021, 411, 128567.

    CAS  Google Scholar 

  32. Cheng, Y.; Sun, Y.; Chu, C. T.; Chang, L. M.; Wang, Z. M.; Zhang, D. Y.; Liu, W. Q.; Zhuang, Z. C.; Wang, L. M. Stabilizing effects of atomic Ti doping on high-voltage high-nickel layered oxide cathode for lithium-ion rechargeable batteries. Nano Res., in press, https://doi.org/10.1007/s12274-021-4035-2.

  33. Nørskov, J. K.; Bligaard, T.; Logadottir, A.; Kitchin, J. R.; Chen, J. G.; Pandelov, S.; Stimming, U. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 2005, 152, J23.

    Google Scholar 

  34. Hu, X. Y.; Zhang, Q.; Yu, S. S. Theoretical insight into the hydrogen adsorption on MoS2 (MoSe2) monolayer as a function of biaxial strain/external electric field. Appl. Surf. Sci. 2019, 478, 857–865.

    CAS  Google Scholar 

  35. Zhou, W. D.; Jiang, Z. Z.; Chen, M. Y.; Li, Z. H.; Luo, X. F.; Guo, M. M.; Yang, Y.; Yu, T.; Yuan, C. L.; Wang, S. G. Directly anchoring non-noble metal single atoms on 1T-TMDs with tip structure for efficient hydrogen evolution. Chem. Eng. J. 2022, 428, 131210.

    CAS  Google Scholar 

  36. Zhuang, Z. C.; Li, Y.; Huang, J. Z.; Li, Z. L.; Zhao, K. N.; Zhao, Y. L.; Xu, L.; Zhou, L.; Moskaleva, Y. M. L.; Mai, L. Q. Sisyphus effects in hydrogen electrochemistry on metal silicides enabled by silicene subunit edge. Sci. Bull. 2019, 64, 617–624.

    CAS  Google Scholar 

  37. Gao, G. P.; Sun, Q.; Du, A. J. Activating catalytic inert basal plane of molybdenum disulfide to optimize hydrogen evolution activity via defect doping and strain engineering. J. Phys. Chem. C 2016, 120, 16761–16766.

    CAS  Google Scholar 

  38. Liu, M. Q.; Wang, J. A.; Klysubun, W.; Wang, G. G.; Sattayaporn, S.; Li, F.; Cai, Y. W.; Zhang, F. C.; Yu, J.; Yang, Y. Interfacial electronic structure engineering on molybdenum sulfide for robust dual-pH hydrogen evolution. Nat. Commun. 2021, 12, 5260.

    CAS  Google Scholar 

  39. Duan, H. L.; Wang, C.; Li, G. N.; Tan, H.; Hu, W.; Cai, L.; Liu, W.; Li, N.; Ji, Q. Q.; Wang, Y. et al. Single-atom-layer catalysis in a MoS2 monolayer activated by long-range ferromagnetism for the hydrogen evolution reaction: Beyond single-atom catalysis. Angew. Chem., Int. Ed. 2021, 133, 7327–7334.

    Google Scholar 

  40. Liu, Z. L.; Li, B. Q.; Feng, Y. J.; Jia, D. C.; Li, C. C.; Sun, Q. F.; Zhou, Y. Strong electron coupling of Ru and vacancy-rich carbon dots for synergistically enhanced hydrogen evolution reaction. Small 2021, 17, 2102496.

    CAS  Google Scholar 

  41. Zhang, P.; Xiang, H. Y.; Tao, L.; Dong, H. J.; Zhou, Y. G.; Hu, T. S.; Chen, X. L.; Liu, S.; Wang, S. Y.; Garaj, S. Chemically activated MoS2 for efficient hydrogen production. Nano Energy 2019, 57, 535–541.

    CAS  Google Scholar 

  42. Guo, S. H.; Li, X. H.; Li, J.; Wei, B. Q. Boosting photocatalytic hydrogen production from water by photothermally induced biphase systems. Nat. Commun. 2021, 12, 1343.

    CAS  Google Scholar 

  43. Xin, X.; Song, Y. R.; Guo, S. H.; Zhang, Y. Z.; Wang, B. L.; Yu, J. K.; Li, X. H. In-situ growth of high-content 1T phase MoS2 confined in the CuS nanoframe for efficient photocatalytic hydrogen evolution. Appl. Catal. B 2020, 269, 118773.

    CAS  Google Scholar 

  44. Liang, D.; Zhang, Y. W.; Lu, P. F.; Yu, Z. G. Strain and defect engineered monolayer Ni-MoS2 for pH-universal hydrogen evolution catalysis. Nanoscale 2019, 11, 18329–18337.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Funds for Distinguished Young Scientists (No. 61825503), the National Natural Science Foundation of China (Nos. 51902101, 61775101, and 61804082), the Natural Science Foundation of Jiangsu Province (Nos. BK20201381 and BK20210577), the Science Foundation of Nanjing University of Posts and Telecommunications (No. NY219144), and the National College Student Innovation and Entrepreneurship Training Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Longlu Wang, Jin Wang or Qiang Zhao.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Li, H., Liu, S. et al. Tailoring activation sites of metastable distorted 1T′-phase MoS2 by Ni doping for enhanced hydrogen evolution. Nano Res. 15, 5946–5952 (2022). https://doi.org/10.1007/s12274-022-4267-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4267-9

Keywords

Navigation