Skip to main content
Log in

An electrochromic coordination nanosheet for robust CO2 photoreduction via ligand-based electron transfer

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A coordination nanosheet composed of [Fe(tpy)2]2+ (tpy = 2,2′:6′,2″-terpyridine) units, showing reversible electrochromism at the ligand-based cathodic potential, has been prepared through a liquid/liquid interfacial synthesis. The noble metal-free nanosheet exhibited a CO evolution rate of 114.3 mmol·g−1·h−1 with the selectivity up to 99.3% under visible light irradiation in the presence of water, which is in the front rank of heterogeneous catalysis for CO2 photoreduction. Such robust photocatalytic performance is due to efficient ligand-based electron transfer through long-lived π radical anion tpy with a lifetime more than 25 min, as evidenced by in situ electron paramagnetic resonance (EPR) and ultraviolet—visible—near infrared (UV—vis—NIR) spectroscopy studies. Fe(II) cation in [Fe(tpy)2]2+ mainly contributes to enhancing reduction potentials of ligand and stabilizing π radical anion tpy. This ligand-based electron transfer with the aid of metal cation represents a promising strategy for selective CO2 photoreduction, especially towards gaining CO from CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mondal, B.; Rana, A.; Sen, P.; Dey, A. Intermediates involved in the 2e/2h+ reduction of CO2 to CO by iron(0) porphyrin. J. Am. Chem. Soc. 2015, 137, 11214–11217.

    Article  CAS  Google Scholar 

  2. Hooe, S. L.; Dressel, J. M.; Dickie, D. A.; Machan, C. W. Highly efficient electrocatalytic reduction of CO2 to CO by a molecular chromium complex. ACS Catal. 2020, 10, 1146–1151.

    Article  CAS  Google Scholar 

  3. Kinzel, N. W.; Werlé, C.; Leitner, W. Transition metal complexes as catalysts for the electroconversion of CO2: An organometallic perspective. Angew. Chem., Int. Ed. 2021, 60, 11628–11686.

    Article  CAS  Google Scholar 

  4. Nie, W. X.; Tarnopol, D. E.; McCrory, C. C. L. Enhancing a molecular electrocatalyst’s activity for CO2 reduction by simultaneously modulating three substituent effects. J. Am. Chem. Soc. 2021, 143, 3764–3778.

    Article  CAS  Google Scholar 

  5. Martin, D. J.; Mayer, J. M. Oriented electrostatic effects on O2 and CO2 reduction by a polycationic iron porphyrin. J. Am. Chem. Soc. 2021, 143, 11423–11434.

    Article  CAS  Google Scholar 

  6. Costentin, C.; Drouet, S.; Passard, G.; Robert, M.; Savéant, J. M. Proton-coupled electron transfer cleavage of heavy-atom bonds in electrocatalytic processes. Cleavage of a C—O bond in the catalyzed electrochemical reduction of CO2. J. Am. Chem. Soc. 2013, 135, 9023–9031.

    Article  CAS  Google Scholar 

  7. Guo, Y.; Wang, Y. C.; Shen, Y.; Cai, Z. Y.; Li, Z.; Liu, J.; Chen, J. W.; Xiao, C.; Liu, H. C.; Lin, W. B. et al. Tunable cobalt-polypyridyl catalysts supported on metal-organic layers for electrochemical CO2 reduction at low overpotentials. J. Am. Chem. Soc. 2020, 142, 21493–21501.

    Article  CAS  Google Scholar 

  8. Derrick, J. S.; Loipersberger, M.; Chatterjee, R.; Iovan, D. A.; Smith, P. T.; Chakarawet, K.; Yano, J.; Long, J. R.; Head-Gordon, M.; Chang, C. J. Metal-ligand cooperativity via exchange coupling promotes iron- catalyzed electrochemical CO2 reduction at low overpotentials. J. Am. Chem. Soc. 2020, 142, 20489–20501.

    Article  CAS  Google Scholar 

  9. Boutin, E.; Merakeb, L.; Ma, B.; Boudy, B.; Wang, M.; Bonin, J.; Anxolabéhère-Mallart, E.; Robert, M. Molecular catalysis of CO2 reduction: Recent advances and perspectives in electrochemical and light-driven processes with selected Fe, Ni and Co aza macrocyclic and polypyridine complexes. Chem. Soc. Rev. 2020, 49, 5772–5809.

    Article  CAS  Google Scholar 

  10. Gonell, S.; Assaf, E. A.; Duffee, K. D.; Schauer, C. K.; Miller, A. J. M. Kinetics of the trans effect in ruthenium complexes provide insight into the factors that control activity and stability in CO2 electroreduction. J. Am. Chem. Soc. 2020, 142, 8980–8999.

    Article  CAS  Google Scholar 

  11. Zhang, X.; Cibian, M.; Call, A.; Yamauchi, K.; Sakai, K. Photochemical CO2 reduction driven by water-soluble copper(I) photosensitizer with the catalysis accelerated by multi-electron chargeable cobalt porphyrin. ACS Catal. 2019, 9, 11263–11273.

    Article  CAS  Google Scholar 

  12. Ouyang, T.; Huang, H. H.; Wang, J. W.; Zhong, D. C.; Lu, T. B. A dinuclear cobalt cryptate as a homogeneous photocatalyst for highly selective and efficient visible-light driven CO2 reduction to CO in CH3CN/H2O solution. Angew. Chem., Int. Ed. 2017, 56, 738–743.

    Article  CAS  Google Scholar 

  13. Sato, S.; Morikawa, T.; Kajino, T.; Ishitani, O. A highly efficient mononuclear iridium complex photocatalyst for CO2 reduction under visible light. Angew. Chem., Int. Ed. 2013, 52, 988–992.

    Article  CAS  Google Scholar 

  14. Lu, Y. L.; Liu, M. H.; Zheng, N. C.; He, X.; Hu, R. T.; Wang, R. L.; Zhou, Q.; Hu, Z. F. Promoting the protonation step on the interface of titanium dioxide for selective photocatalytic reduction of CO2 to CH4 by using red phosphorus quantum dots. Nano Res., in press, https://doi.org/10.1007/s12274-021-3943-5.

  15. Hong, D. C.; Kawanishi, T.; Tsukakoshi, Y.; Kotani, H.; Ishizuka, T.; Kojima, T. Efficient photocatalytic CO2 reduction by a Ni(II) complex having pyridine pendants through capturing a Mg2+ ion as a Lewis-acid cocatalyst. J. Am. Chem. Soc. 2019, 141, 20309–20317.

    Article  CAS  Google Scholar 

  16. Kamada, K.; Jung, J.; Wakabayashi, T.; Sekizawa, K.; Sato, S.; Morikawa, T.; Fukuzumi, S.; Saito, S. Photocatalytic CO2 reduction using a robust multifunctional iridium complex toward the selective formation of formic acid. J. Am. Chem. Soc. 2020, 142, 10261–10266.

    Article  CAS  Google Scholar 

  17. Sen, P.; Mondal, B.; Saha, D.; Rana, A.; Dey, A. Role of 2nd sphere h-bonding residues in tuning the kinetics of CO2 reduction to CO by iron porphyrin complexes. Dalton Trans. 2019, 48, 5965–5977.

    Article  CAS  Google Scholar 

  18. Wang, X. Z.; Meng, S. L.; Chen, J. Y.; Wang, H. X.; Wang, Y.; Zhou, S.; Li, X. B.; Liao, R. Z.; Tung, C. H.; Wu, L. Z. Mechanistic insights into iron(II) bis(pyridyl)amine-bipyridine skeleton for selective CO2 photoreduction. Angew. Chem., Int. Ed. 2021, 60, 26072–26079.

    Article  CAS  Google Scholar 

  19. Ghosh, D.; Takeda, H.; Fabry, D. C.; Tamaki, Y.; Ishitani, O. Supramolecular photocatalyst with a Rh(III)-complex catalyst unit for CO2 reduction. ACS Sustainable Chem. Eng. 2019, 7, 2648–2657.

    Article  CAS  Google Scholar 

  20. Kamogawa, K.; Shimoda, Y.; Miyata, K.; Onda, K.; Yamazaki, Y.; Tamaki, Y.; Ishitani, O. Mechanistic study of photocatalytic CO2 reduction using a Ru(II)-Re(I) supramolecular photocatalyst. Chem. Sci. 2021, 12, 9682–9693.

    Article  CAS  Google Scholar 

  21. Kuehnel, M. F.; Orchard, K. L.; Dalle, K. E.; Reisner, E. Selective photocatalytic CO2 reduction in water through anchoring of a molecular Ni catalyst on CdS nanocrystals. J. Am. Chem. Soc. 2017, 139, 7217–7223.

    Article  CAS  Google Scholar 

  22. Woo, S. J.; Choi, S.; Kim, S. Y.; Kim, P. S.; Jo, J. H.; Kim, C. H.; Son, H. J.; Pac, C.; Kang, S. O. Highly selective and durable photochemical CO2 reduction by molecular Mn(I) catalyst fixed on a particular dye-sensitized TiO2 platform. ACS Catal. 2019, 9, 2580–2593.

    Article  CAS  Google Scholar 

  23. Kuriki, R.; Sekizawa, K.; Ishitani, O.; Maeda, K. Visible-light-driven CO2 reduction with carbon nitride: Enhancing the activity of ruthenium catalysts. Angew. Chem., Int. Ed. 2015, 54, 2406–2409.

    Article  CAS  Google Scholar 

  24. Roy, S.; Reisner, E. Visible-light-driven CO2 reduction by mesoporous carbon nitride modified with polymeric cobalt phthalocyanine. Angew. Chem., Int. Ed. 2019, 58, 12180–12184.

    Article  CAS  Google Scholar 

  25. Feng, X. Y.; Pi, Y. H.; Song, Y.; Brzezinski, C.; Xu, Z. W.; Li, Z.; Lin, W. B. Metal-organic frameworks significantly enhance photocatalytic hydrogen evolution and CO2 reduction with earth-abundant copper photosensitizers. J. Am. Chem. Soc. 2020, 142, 690–695.

    Article  CAS  Google Scholar 

  26. Choi, K. M.; Kim, D.; Rungtaweevoranit, B.; Trickett, C. A.; Barmanbek, J. T. D.; Alshammari, A. S.; Yang, P. D.; Yaghi, O. M. Plasmon-enhanced photocatalytic CO2 conversion within metal-organic frameworks under visible light. J. Am. Chem. Soc. 2017, 139, 356–362.

    Article  CAS  Google Scholar 

  27. Zhao, J. W.; Ren, J. Y.; Zhang, G.; Zhao, Z. Q.; Liu, S. Y.; Zhang, W. D.; Chen, L. Donor-acceptor type covalent organic frameworks. Chem. -Eur. J. 2021, 27, 10781–10797.

    Article  CAS  Google Scholar 

  28. Ma, B.; Blanco, M.; Calvillo, L.; Chen, L. J.; Chen, G.; Lau, T. C.; Dražić, G.; Bonin, J.; Robert, M.; Granozzi, G. Hybridization of molecular and graphene materials for CO2 photocatalytic reduction with selectivity control. J. Am. Chem. Soc. 2021, 143, 8414–8425.

    Article  CAS  Google Scholar 

  29. Ma, B.; Chen, G.; Fave, C.; Chen, L. J.; Kuriki, R.; Maeda, K.; Ishitani, O.; Lau, T. C.; Bonin, J.; Robert, M. Efficient visible-light-driven CO2 reduction by a cobalt molecular catalyst covalently linked to mesoporous carbon nitride. J. Am. Chem. Soc. 2020, 142, 6188–6195.

    Article  CAS  Google Scholar 

  30. Nakada, A.; Kumagai, H.; Robert, M.; Ishitani, O.; Maeda, K. Molecule/semiconductor hybrid materials for visible-light CO2 reduction: Design principles and interfacial engineering. Acc. Mater. Res. 2021, 2, 458–470.

    Article  CAS  Google Scholar 

  31. Saito, D.; Yamazaki, Y.; Tamaki, Y.; Ishitani, O. Photocatalysis of a dinuclear Ru(II)-Re(I) complex for CO2 reduction on a solid surface. J. Am. Chem. Soc. 2020, 142, 19249–19258.

    Article  CAS  Google Scholar 

  32. Takada, K.; Sakamoto, R.; Yi, S. T.; Katagiri, S.; Kambe, T.; Nishihara, H. Electrochromic bis(terpyridine)metal complex nanosheets. J. Am. Chem. Soc. 2015, 137, 4681–4689.

    Article  CAS  Google Scholar 

  33. Roy, S.; Chakraborty, C. Interfacial coordination nanosheet based on nonconjugated three-arm terpyridine: A highly color-efficient electrochromic material to converge fast switching with long optical memory. ACS Appl. Mater. Interfaces 2020, 12, 35181–35192.

    Article  CAS  Google Scholar 

  34. Duan, J. G.; Li, Y. S.; Pan, Y. C.; Behera, N.; Jin, W. Q. Metal-organic framework nanosheets: An emerging family of multifunctional 2D materials. Coord. Chem. Rev. 2019, 395, 25–45.

    Article  CAS  Google Scholar 

  35. Maeda, H.; Sakamoto, R.; Nishihara, H. Interfacial synthesis of electrofunctional coordination nanowires and nanosheets of bis(terpyridine) complexes. Coord. Chem. Rev. 2017, 346, 139–149.

    Article  CAS  Google Scholar 

  36. Sakamoto, R.; Takada, K.; Sun, X. S.; Pal, T.; Tsukamoto, T.; Phua, E. J. H.; Rapakousiou, A.; Hoshiko, K.; Nishihara, H. The coordination nanosheet (CONASH). Coord. Chem. Rev. 2016, 320-321, 118–128.

    Article  Google Scholar 

  37. Mondal, S.; Ninomiya, Y.; Yoshida, T.; Mori, T.; Bera, M. K.; Ariga, K.; Higuchi, M. Dual-branched dense hexagonal Fe(II)-based coordination nanosheets with red-to-colorless electrochromism and durable device fabrication. ACS Appl. Mater. Interfaces 2020, 12, 31896–31903.

    Article  CAS  Google Scholar 

  38. Hsu, C. Y.; Zhang, J.; Sato, T.; Moriyama, S.; Higuchi, M. Black-to-transmissive electrochromism with visible-to-near-infrared switching of a Co(II)-based metallo-supramolecular polymer for smart window and digital signage applications. ACS Appl. Mater. Interfaces 2015, 7, 18266–18272.

    Article  CAS  Google Scholar 

  39. Wang, Y. N.; Gao, X. W.; Li, J. L.; Chao, D. B. Merging an organic TADF photosensitizer and a simple terpyridine-Fe(III) complex for photocatalytic CO2 reduction. Chem. Commun. 2020, 56, 12170–12173.

    Article  CAS  Google Scholar 

  40. Wang, Y. N.; Chen, L. X.; Liu, T.; Chao, D. B. Coordination-driven discrete metallo-supramolecular assembly for rapid and selective photochemical CO2 reduction in aqueous solution. Dalton Trans. 2021, 50, 6273–6280.

    Article  CAS  Google Scholar 

  41. Wang, Y. N.; Liu, T.; Chen, L. X.; Chao, D. B. Water-assisted highly efficient photocatalytic reduction of CO2 to CO with noble metal-free bis(terpyridine)iron(II) complexes and an organic photosensitizer. Inorg. Chem. 2021, 60, 5590–5597.

    Article  CAS  Google Scholar 

  42. Francke, R.; Schille, B.; Roemelt, M. Homogeneously catalyzed electroreduction of carbon dioxide—Methods, mechanisms, and catalysts. Chem. Rev. 2018, 118, 4631–4701.

    Article  CAS  Google Scholar 

  43. Bonin, J.; Maurin, A.; Robert, M. Molecular catalysis of the electrochemical and photochemical reduction of CO2 with Fe and Co metal based complexes. Recent advances. Coord. Chem. Rev. 2017, 334, 184–198.

    Article  CAS  Google Scholar 

  44. Grills, D. C.; Ertem, M. Z.; McKinnon, M.; Ngo, K. T.; Rochford, J. Mechanistic aspects of CO2 reduction catalysis with manganese-based molecular catalysts. Coord. Chem. Rev. 2018, 374, 173–217.

    Article  CAS  Google Scholar 

  45. Bauer, T.; Zheng, Z. K.; Renn, A.; Enning, R.; Stemmer, A.; Sakamoto, J.; Schlüter, A. D. Synthesis of free-standing, monolayered organometallic sheets at the air/water interface. Angew. Chem., Int. Ed. 2011, 50, 7879–7884.

    Article  CAS  Google Scholar 

  46. Biesinger, M. C.; Payne, B. P.; Grosvenor, A. P.; Lau, L. W. M.; Gerson, A. R.; Smart, R. S. C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 2011, 257, 2717–2730.

    Article  CAS  Google Scholar 

  47. Allan, J. T. S.; Quaranta, S.; Ebralidze, I. I.; Egan, J. G.; Poisson, J.; Laschuk, N. O.; Gaspari, F.; Easton, E. B.; Zenkina, O. V. Terpyridine-based monolayer electrochromic materials. ACS Appl. Mater. Interfaces 2017, 9, 40438–40445.

    Article  CAS  Google Scholar 

  48. Elgrishi, N.; Chambers, M. B.; Artero, V.; Fontecave, M. Terpyridine complexes of first row transition metals and electrochemical reduction of CO2 to CO. Phys. Chem. Chem. Phys. 2014, 16, 13635–13644.

    Article  CAS  Google Scholar 

  49. Braterman, P. S.; Song, J. I.; Peacock, R. D. Electronic absorption spectra of the iron(II) complexes of 2,2′-bipyridine, 2,2′-bipyrimidine, 1,10-phenanthroline, and 2,2′:6′,2″-terpyridine and their reduction products. Inorg. Chem. 1992, 31, 555–559.

    Article  CAS  Google Scholar 

  50. Bryden, M. A.; Zysman-Colman, E. Organic thermally activated delayed fluorescence (TADF) compounds used in photocatalysis. Chem. Soc. Rev. 2021, 50, 7587–7680.

    Article  CAS  Google Scholar 

  51. Call, A.; Cibian, M.; Yamamoto, K.; Nakazono, T.; Yamauchi, K.; Sakai, K. Highly efficient and selective photocatalytic CO2 reduction to CO in water by a cobalt porphyrin molecular catalyst. ACS Catal. 2019, 9, 4867–4874.

    Article  CAS  Google Scholar 

  52. Loipersberger, M.; Zee, D. Z.; Panetier, J. A.; Chang, C. J.; Long, J. R.; Head-Gordon, M. Computational study of an iron(II) polypyridine electrocatalyst for CO2 reduction: Key roles for intramolecular interactions in CO2 binding and proton transfer. Inorg. Chem. 2020, 59, 8146–8160.

    Article  CAS  Google Scholar 

  53. Liu, Y.; Guo, J. H.; Dao, X. Y.; Zhang, X. D.; Zhao, Y.; Sun, W. Y. Coordination polymers with a pyridyl-salen ligand for photocatalytic carbon dioxide reduction. Chem. Commun. 2020, 56, 4110–4113.

    Article  CAS  Google Scholar 

  54. Curcio, M.; Henschel, D.; Hüttenschmidt, M.; Sproules, S.; Love, J. B. Radical relatives: Facile oxidation of hetero-diarylmethene anions to neutral radicals. Inorg. Chem. 2018, 57, 9592–9600.

    Article  CAS  Google Scholar 

  55. Wang, M.; Weyhermüller, T.; Bill, E.; Ye, S. F.; Wieghardt, K. Structural and spectroscopic characterization of rhenium complexes containing neutral, monoanionic, and dianionic ligands of 2,2′-bipyridines and 2,2′:6,2″-terpyridines: An experimental and density functional theory (DFT)-computational study. Inorg. Chem. 2011, 55, 5019–5036.

    Article  Google Scholar 

  56. Scarborough, C. C.; Lancaster, K. M.; DeBeer, S.; Weyhermüller, T.; Sproules, S.; Wieghardt, K. Experimental fingerprints for redox-active terpyridine in [Cr(tpy)2](PF6)n (n = 3-0), and the remarkable electronic structure of [Cr(tpy)2]1−. Inorg. Chem. 2012, 51, 3718–3732.

    Article  CAS  Google Scholar 

  57. Rao, H.; Lim, C. H.; Bonin, J.; Miyake, G. M.; Robert, M. Visible-light-driven conversion of CO2 to CH4 with an organic sensitizer and an iron porphyrin catalyst. J. Am. Chem. Soc. 2018, 140, 17830–17834.

    Article  CAS  Google Scholar 

  58. Chen, L. J.; Qin, Y. F.; Chen, G.; Li, M. Y.; Cai, L. R.; Qiu, Y. F.; Fan, H. B.; Robert, M.; Lau, T. C. A molecular noble metal-free system for efficient visible light-driven reduction of CO2 to CO. Dalton Trans. 2019, 48, 9596–9602.

    Article  CAS  Google Scholar 

  59. Elgrishi, N.; Chambers, M. B.; Fontecave, M. Turning it off! Disfavouring hydrogen evolution to enhance selectivity for CO production during homogeneous CO2 reduction by cobalt-terpyridine complexes. Chem. Sci. 2015, 6, 2522–2531.

    Article  CAS  Google Scholar 

  60. Wang, J. L.; Li, X. P.; Shreiner, C. D.; Lu, X. C.; Moorefield, C. N.; Tummalapalli, S. R.; Medvetz, D. A.; Panzner, M. J.; Fronczek, F. R.; Wesdemiotis, C. et al. Shape-persistent, ruthenium(II)- and iron(II)-bisterpyridine metallodendrimers: Synthesis, traveling-wave ion-mobility mass spectrometry, and photophysical properties. New J. Chem. 2012, 36, 484–491.

    Article  CAS  Google Scholar 

  61. Machan, C. W.; Adelhardt, M.; Sarjeant, A. A.; Stern, C. L.; Sutter, J.; Meyer, K.; Mirkin, C. A. One-pot synthesis of an Fe(II) bisterpyridine complex with allosterically regulated electronic properties. J. Am. Chem. Soc. 2012, 134, 16921–16924.

    Article  CAS  Google Scholar 

  62. Albano, G.; Balzani, V.; Constable, E. C.; Maestri, M.; Smith, D. R. Photoinduced processes in 4′-(9-anthryl)-2,2′:6′,2″-terpyridine, its protonated forms and Zn(II), Ru(II) and Os(II) complexes. Inorg. Chim. Acta 1998, 277, 225–231.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Ningbo (No. 202003N4077) and the Scientific Research Fund of Zhejiang Provincial Education Department (No. Y202146152).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duobin Chao.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Liu, T. & Chao, D. An electrochromic coordination nanosheet for robust CO2 photoreduction via ligand-based electron transfer. Nano Res. 15, 5902–5911 (2022). https://doi.org/10.1007/s12274-022-4245-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4245-2

Keywords

Navigation