Skip to main content
Log in

Constructing a stable cobalt-nitrogen-carbon air cathode from coordinatively unsaturated zeolitic-imidazole frameworks for rechargeable zinc-air batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Zeolitic-imidazole frameworks (ZIFs) derivations have widely emerged as an efficient air cathode of zinc-air batteries (ZABs) due to excellent bifunctional oxygen electrocatalysis performance. However, they are not stable enough for long-term operation of rechargeable ZABs because of weak association with current collector, especially under bending conditions for flexible ZAB devices. Here, we show that by purposely designing coordinatively unsaturated ZIFs via a facile morphology regulation, which can be chemically linked on acid-treated carbon cloth, a stable Co-N-C air cathode is therefore derived where Co nanoparticles (NPs) are uniformly confined within the Co-N-C matrix on carbon cloth (Co/Co-N-C/CC). Specifically, when without being stabilized from carbon cloth, the pyrolysis of ZIFs with different unsaturated coordination levels has a negligible impact on the bifunctional oxygen-catalyzed performance. The optimal Co/Co-N-C/CC catalyst assembled ZAB possesses a large open circuit voltage of 1.415 V and a high peak power density of 163 mW·cm−2 as well as excellent cycling durability upon 630 discharge-charge cycles with 61% voltage efficiency remained, largely exceeding those of a benchmark Pt/C-IrO2 catalyst assembled ZAB. The synergy between Co NPs and active Co-N-C sites via electronic interaction induces the outstanding bifunctional oxygen-catalyzed activity and cathode performance. The present work highlights the importance of unsaturated coordination structures in ZIFs precursors for the performance of derived nanostructures in integrated electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lee, J. S.; Kim, S. T.; Cao, R. G.; Choi, N. S.; Liu, M. L.; Lee, K. T.; Cho, J. Metal-air batteries with high energy density: Li-air versus Zn-air. Adv. Energy Mater. 2011, 1, 34–50.

    Article  CAS  Google Scholar 

  2. Meng, F. L.; Liu, K. H.; Zhang, Y.; Shi, M. M.; Zhang, X. B.; Yan, J. M.; Jiang, Q. Recent advances toward the rational design of efficient bifunctional air electrodes for rechargeable Zn-air batteries. Small 2018, 14, 1703843.

    Article  Google Scholar 

  3. Li, J. K.; Alsudairi, A.; Ma, Z. F.; Mukerjee, S.; Jia, Q. Y. Asymmetric volcano trend in oxygen reduction activity of Pt and non-Pt catalysts: In situ identification of the site-blocking effect. J. Am. Chem. Soc. 2017, 139, 1384–1387.

    Article  CAS  Google Scholar 

  4. Li, W. D.; Zhao, Y. X.; Liu, Y.; Sun, M. Z.; Waterhouse, G. I. N.; Huang, B. L.; Zhang, K.; Zhang, T. R.; Lu, S. Y. Exploiting Ru-induced lattice strain in CoRu nanoalloys for robust bifunctional hydrogen production. Angew. Chem., Int. Ed. 2021, 60, 3290–3298.

    Article  CAS  Google Scholar 

  5. Song, H. Q.; Wu, M.; Tang, Z. Y.; Tse, J. S.; Yang, B.; Lu, S. Y. Single atom ruthenium-doped CoP/CDs nanosheets via splicing of carbon-dots for robust hydrogen production. Angew. Chem., Int. Ed. 2021, 60, 7234–7244.

    Article  CAS  Google Scholar 

  6. Han, A. L.; Wang, X. J.; Tang, K.; Zhang, Z. D.; Ye, C. L.; Kong, K. J.; Hu, H. B.; Zheng, L. R.; Jiang, P.; Zhao, C. X. et al. An adjacent atomic platinum site enables single-atom iron with high oxygen reduction reaction performance. Angew. Chem., Int. Ed. 2021, 60, 19262–19271.

    Article  CAS  Google Scholar 

  7. Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842–1855.

    Article  CAS  Google Scholar 

  8. Wang, Y.; Zheng, X. B; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

    Article  CAS  Google Scholar 

  9. Song, H. Q.; Li, Y. H.; Shang, L.; Tang, Z. Y.; Zhang, T. R.; Lu, S. Y. Designed controllable nitrogen-doped carbon-dots-loaded MoP nanoparticles for boosting hydrogen evolution reaction in alkaline medium. Nano Energy 2020, 72, 104730.

    Article  CAS  Google Scholar 

  10. Cui, T. T.; Wang, Y. P.; Ye, Y.; Wu, J.; Chen, Z. Q.; Li, J.; Lei, Y. P.; Wang, D. S.; Li, Y. D. Engineering dual single-atom sites on 2D ultrathin N-doped carbon nanosheets attaining ultra-low-temperature zinc-air battery. Angew. Chem., Int. Ed. 2022, 61, e202115219.

    Article  CAS  Google Scholar 

  11. Zhang, L.; Zhu, J. W.; Li, X.; Mu, S. C.; Verpoort, F.; Xue, J. M.; Kou, Z. K.; Wang, J. Nurturing the marriages of single atoms with atomic clusters and nanoparticles for better heterogeneous electrocatalysis. Interdiscip. Mater. 2022, 1, 51–87.

    Article  Google Scholar 

  12. Wu, W. J.; Liu, Y.; Liu, D.; Chen, W. X.; Song, Z. Y.; Wang, X. M.; Zheng, Y. M.; Lu, N.; Wang, C. X.; Mao, J. J. et al. Single copper sites dispersed on hierarchically porous carbon for improving oxygen reduction reaction towards zinc-air battery. Nano Res. 2021, 14, 998–1003.

    Article  CAS  Google Scholar 

  13. Hu, B. T.; Huang, A. J.; Zhang, X. J.; Chen, Z.; Tu, R. Y.; Zhu, W.; Zhuang, Z. B.; Chen, C.; Peng, Q.; Li, Y. D. Atomic Co/Ni dual sites with N/P-coordination as bifunctional oxygen electrocatalyst for rechargeable zinc-air batteries. Nano Res. 2021, 14, 3482–3488.

    Article  CAS  Google Scholar 

  14. Zhang, Z. W.; Jin, H. H.; Zhu, J. W.; Li, W. Q.; Zhang, C. T.; Zhao, J. H.; Luo, F.; Sun, Z. G.; Mu, S. C. 3D flower-like ZnFe-ZIF derived hierarchical Fe, N-Codoped carbon architecture for enhanced oxygen reduction in both alkaline and acidic media, and zinc-air battery performance. Carbon 2020, 161, 502–509.

    Article  CAS  Google Scholar 

  15. Amiinu, I. S.; Liu, X. B; Pu, Z. H; Li, W. Q; Li, Q. D; Zhang, J.; Tang, H. L.; Zhang, H. N.; Mu, S. C. From 3D ZIF nanocrystals to Co-Nx/C nanorod array electrocatalysts for ORR, OER, and Zn-air batteries. Adv. Funct. Mater. 2018, 28, 1704638.

    Article  Google Scholar 

  16. Tana, P.; Chen, B.; Xua, H. R.; Zhang, H. C.; Cai, W. Z.; Ni, M.; Liu, M. L.; Shao, Z. P. Flexible Zn- and Li-air batteries: Recent advances, challenges, and future perspectives. Energy Environ. Sci. 2017, 10, 2056–2080.

    Article  Google Scholar 

  17. Jiang, Y.; Deng, Y. P.; Liang, R. L.; Fu, J.; Gao, R.; Luo, D.; Bai, Z. Y.; Hu, Y. F.; Yu, A. P.; Chen, Z. W. d-Orbital steered active sites through ligand editing on heterometal imidazole frameworks for rechargeable zinc-air battery. Nat. Commun. 2020, 11, 5858.

    Article  CAS  Google Scholar 

  18. Yan, X. X.; Ha, Y.; Wu, R. B. Binder-free air electrodes for rechargeable zinc-air batteries: Recent progress and future perspectives. Small Methods 2021, 5, 2000827.

    Article  CAS  Google Scholar 

  19. Zang, W. J.; Sumboja, A.; Ma, Y. Y.; Zhang, H.; Wu, Y.; Wu, S. S.; Wu, H. J.; Liu, Z. L.; Guan, C.; Wang, J. et al. Single Co atoms anchored in porous N-doped carbon for efficient zinc-air battery cathodes. ACS Catal. 2018, 8, 8961–8969.

    Article  CAS  Google Scholar 

  20. Guan, C.; Sumboja, A.; Wu, H. J.; Ren, W. N.; Liu, X. M.; Zhang, H.; Liu, Z. L.; Cheng, C. W.; Pennycook, S. J.; Wang, J. Hollow Co3O4 nanosphere embedded in carbon arrays for stable and flexible solid-state zinc-air batteries. Adv. Mater. 2017, 29, 1704117.

    Article  Google Scholar 

  21. Xie, J. P.; Li, J. L.; Li, X. D.; Lei, H.; Zhuo, W. C.; Li, X. B.; Hong, G.; Hui, K. N.; Pan, L. K.; Mai, W. J. Ultrahigh “relative energy density” and mass loading of carbon cloth anodes for K-ion batteries. CCS Chem. 2020, 3, 791–799.

    Article  Google Scholar 

  22. Zhu, L.; Zheng, D. Z.; Wang, Z. F.; Zheng, X. S.; Fang, P. P.; Zhu, J. F.; Yu, M. H.; Tong, Y. X.; Lu, X. H. A confinement strategy for stabilizing ZIF-derived bifunctional catalysts as a benchmark cathode of flexible all-solid-state zinc-air batteries. Adv. Mater. 2018, 30, 1805268.

    Article  Google Scholar 

  23. Li, X.; Li, Z. H.; Lu, L.; Huang, L. M.; Xiang, L.; Shen, J.; Liu, S. Y.; Xiao, D. R. The solvent induced inter-dimensional phase transformations of cobalt zeolitic-imidazolate frameworks. Chem.—Eur. J. 2017, 23, 10638–10643.

    Article  CAS  Google Scholar 

  24. Chen, R. Z.; Yao, J. F.; Gu, Q. F.; Smeets, S.; Baerlocher, C.; Gu, H. X.; Zhu, D. R.; Morris, W.; Yaghi, O. M.; Wang, H. T. Two-dimensional zeolitic imidazolate framework with a cushion-shaped cavity for CO2 adsorption. Chem. Commun. 2013, 49, 9500–9502.

    Article  CAS  Google Scholar 

  25. Low, Z. X.; Yao, J. F.; Liu, Q.; He, M.; Wang, Z. Y.; Suresh, A. K.; Bellare, J.; Wang, H. T. Crystal transformation in zeolitic-imidazolate framework. Cryst. Growth Des. 2014, 14, 6589–6598.

    Article  CAS  Google Scholar 

  26. Yang, F.; Xie, J. H.; Liu, X. Q.; Wang, G. Z.; Lu, X. H. Linker defects triggering boosted oxygen reduction activity of Co/Zn-ZIF nanosheet arrays for rechargeable Zn-air batteries. Small 2021, 17, 2007085.

    Article  CAS  Google Scholar 

  27. Zhou, K.; Mousavi, B.; Luo, Z. X.; Phatanasri, S.; Chaemchuen, S.; Verpoort, F. Characterization and properties of Zn/Co zeolitic imidazolate frameworks vs. ZIF-8 and ZIF-67. J. Mater. Chem. A 2017, 5, 952–957.

    Article  CAS  Google Scholar 

  28. Kim, D. W.; Kang, D. W.; Kang, M.; Lee, J. H.; Choe, J. H.; Chae, Y. S.; Choi, D. S.; Yun, H.; Hong, C. S. High ammonia uptake of a metal-organic framework adsorbent in a wide pressure range. Angew. Chem. 2020, 132, 22720–22725.

    Article  Google Scholar 

  29. Yi, F. Y.; Zhang, R.; Wang, H. L.; Chen, L. F.; Han, L.; Jiang, H. L.; Xu, Q. Metal-organic frameworks and their composites: Synthesis and electrochemical applications. Small Methods 2017, 1, 1700187.

    Article  Google Scholar 

  30. Chen, Z. L.; Ha, Y.; Jia, H. X.; Yan, X. X.; Chen, M.; Liu, M.; Wu, R. B. Oriented transformation of Co-LDH into 2D/3D ZIF-67 to achieve Co-N-C hybrids for efficient overall water splitting. Adv. Energy Mater. 2019, 9, 1803918.

    Article  Google Scholar 

  31. Chen, Y. S.; Zhang, W. H.; Zhu, Z. Y.; Zhang, L. L.; Yang, J. Y.; Chen, H. H.; Zheng, B.; Li, S; Zhang, W. N.; Wu, J. S. et al. Co nanoparticles combined with nitrogen-doped graphitic carbon anchored on carbon fibers as a self-standing air electrode for flexible zinc-air batteries. J. Mater. Chem. A 2020, 8, 7184–7191.

    Article  CAS  Google Scholar 

  32. Shen, M. X.; Zheng, L. R.; He, W. H.; Ruan, C. P.; Jiang, C. H.; Ai, K. J.; Lu, L. H. High-performance oxygen reduction electrocatalysts derived from uniform cobalt-adenine assemblies. Nano Energy 2015, 17, 120–130.

    Article  CAS  Google Scholar 

  33. Ahn, S. H.; Manthiram, A. Cobalt phosphide coupled with heteroatom-doped nanocarbon hybrid electroctalysts for efficient, long-life rechargeable zinc-air batteries. Small 2017, 13, 1702068.

    Article  Google Scholar 

  34. Yan, L. T.; Xu, Y. L.; Chen, P.; Zhang, S.; Jiang, H. M.; Yang, L. Z.; Wang, Y.; Zhang, L.; Shen, J. X.; Zhao, X. B. et al. A freestanding 3D heterostructure film stitched by MOF-derived carbon nanotube microsphere superstructure and reduced graphene oxide sheets: A superior multifunctional electrode for overall water splitting and Zn-air batteries. Adv. Mater. 2020, 32, 2003313.

    Article  CAS  Google Scholar 

  35. Wang, Y. Y.; Kumar, A.; Ma, M.; Jia, Y.; Wang, Y.; Zhang, Y.; Zhang, G. X.; Sun, X. M.; Yan, Z. F. Hierarchical peony-like FeCo-NC with conductive network and highly active sites as efficient electrocatalyst for rechargeable Zn-air battery. Nano Res. 2020, 13, 1090–1099.

    Article  CAS  Google Scholar 

  36. Jiang, G. Y.; Jiang, N.; Zheng, N.; Chen, X.; Mao, J. Y.; Ding, G. Y.; Li, Y. H.; Sun, F. G.; Li, Y. S. MOF-derived porous Co3O4-NC nanoflake arrays on carbon fiber cloth as stable hosts for dendrite-free Li metal anodes. Energy Storage Mater. 2019, 23, 181–189.

    Article  Google Scholar 

  37. Wang, R. R.; Wu, R. B.; Yan, X. X.; Liu, D.; Guo, P. F.; Li, W.; Pan, H. G. Implanting single Zn atoms coupled with metallic Co nanoparticles into porous carbon nanosheets grafted with carbon nanotubes for high-performance lithium-sulfur batteries. Adv. Funct. Mater., in press, https://doi.org/10.1002/adfm.202200424.

  38. Jiang, Y.; Deng, Y. P.; Liang, R. L.; Fu, J.; Luo, D.; Liu, G. H.; Li, J. D.; Zhang, Z.; Hu, Y. F.; Chen, Z. W. Multidimensional ordered bifunctional air electrode enables flash reactants shuttling for high-energy flexible Zn-air batteries. Adv. Energy Mater. 2019, 9, 1900911.

    Article  Google Scholar 

  39. Wang, T. T.; Kou, Z. K.; Mu, S. C.; Liu, J. P.; He, D. P.; Amiinu, I. S.; Meng, W.; Zhou, K.; Luo, Z. X.; Chaemchuen, S. et al. 2D dual-metal zeolitic-imidazolate-framework-(ZIF)-derived bifunctional air electrodes with ultrahigh electrochemical properties for rechargeable zinc-air batteries. Adv. Funct. Mater. 2018, 28, 1705048.

    Article  Google Scholar 

  40. You, B.; Jiang, N.; Sheng, M. L.; Drisdell, W. S.; Yano, J.; Sun, Y. J. Bimetal-organic framework self-adjusted synthesis of support-free nonprecious electrocatalysts for efficient oxygen reduction. ACS Catal. 2015, 5, 7068–7076.

    Article  CAS  Google Scholar 

  41. Ren, D. Z.; Ying, J.; Xiao, M. L.; Deng, Y. P.; Ou, J. H.; Zhu, J. B.; Liu, G. H.; Pei, Y.; Li, S.; Jauhar, A. M. et al. Hierarchically porous multimetal-based carbon nanorod hybrid as an efficient oxygen catalyst for rechargeable zinc-air batteries. Adv. Funct. Mater. 2020, 30, 1908167.

    Article  CAS  Google Scholar 

  42. Ahn, S. H.; Klein, M. J.; Manthiram, A. 1D Co- and N-doped hierarchically porous carbon nanotubes derived from bimetallic metal organic framework for efficient oxygen and tri-iodide reduction reactions. Adv. Energy Mater. 2017, 7, 1601979.

    Article  Google Scholar 

  43. Guo, D. H.; Shibuya, R.; Akiba, C.; Saji, S.; Kondo, T.; Nakamura, J. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 2016, 351, 361–365.

    Article  CAS  Google Scholar 

  44. Yan, L. T.; Xu, Y. L.; Chen, P.; Zhang, S.; Jiang, H. M.; Yang, L. Z.; Wang, Y.; Zhang, L.; Shen, J. X.; Zhao, X. B. et al. A freestanding 3D heterostructure film stitched by MOF-derived carbon nanotube microsphere superstructure and reduced graphene oxide sheets: A superior multifunctional electrode for overall water splitting and Zn-air batteries. Adv. Mater. 2020, 32, 2003313.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the Fundamental Research Funds for the Central Universities (No. 40120631) and Natural Science Foundation of Hubei Province (No. 20211j0188).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ang Qiao, Francis Verpoort or Zongkui Kou.

Electronic Supplementary Material

12274_2022_4243_MOESM1_ESM.pdf

Constructing a stable cobalt-nitrogen-carbon air cathode from coordinatively unsaturated zeolitic-imidazole frameworks for rechargeable zinc-air batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Liu, M., Chaemchuen, S. et al. Constructing a stable cobalt-nitrogen-carbon air cathode from coordinatively unsaturated zeolitic-imidazole frameworks for rechargeable zinc-air batteries. Nano Res. 15, 5895–5901 (2022). https://doi.org/10.1007/s12274-022-4243-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4243-4

Keywords

Navigation