Skip to main content
Log in

“Nanocompoundsite”: Nano phased polymer dispersed in inorganic matrix via covalent bonds

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Herein we demonstrate a new strategy to construct inorganic-organic “nanocompoundsite”, i.e., a material that nano phased polymer is dispersed in consecutive inorganic matrix via covalent bonds, which is different from the conventional nanocomposite with polymer as matrix and inorganic nanomaterials as dispersed phase. As a representative system, SiOx/polydimethylsiloxane (PDMS) nanocompoundsite was prepared from a polymeric precursor of perhydropolysilazane (PHPS) modified by carbohydroxyl end-capped PDMS (HOC-PDMS), through a room-temperature vacuum ultraviolet (VUV) irradiation manner. By adjusting HOC-PDMS/PHPS ratio below 20%, PDMS fully binds to the PHPS derived SiOx matrix via Si-O-C bond to form the inorganic-organic SiOx/PDMS nanocompoundsite (ISPN) without noticeable phase separation. The introduction of PDMS into ISPN renders its initial decomposition temperature increase over 110 °C. The remarkable enhancement of thermal stability for PDMS is due to the restriction of terminal hydroxyl induced back-biting reaction and main chain degradation by the inorganic matrix and the covalent binding between PDMS and SiOx. This novel strategy can further extend to hydroxyl terminated PDMS, polyethylene glycol, and acrylic resin, with the initial decomposition temperature of each polymer increasing by over 110, 150 and 100 °C, respectively. More importantly, the nanocompoundsite combines the characteristics of inorganic matrix and polymer. The coating based on SiOx/PDMS nanocompoundsite exhibits good flexibility, outstanding interfacial binding strength, ultra-high hardness as well as excellent hydrophobicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nie, G. K.; Li, G. Z.; Wang, L.; Zhang, X. W. Nanocomposites of polymer brush and inorganic nanoparticles: Preparation, characterization and application. Polym. Chem. 2016, 7, 753–769.

    Article  CAS  Google Scholar 

  2. Mera, G.; Gallei, M.; Bernard, S.; Ionescu, E. Ceramic nanocomposites from tailor-made preceramic polymers. Nanomaterials 2015, 5, 468–540.

    Article  CAS  Google Scholar 

  3. Ionescu, E.; Kleebe, H. J.; Riedel, R. Silicon-containing polymer-derived ceramic nanocomposites (PDC-NCs): Preparative approaches and properties. Chem. Soc. Rev. 2012, 41, 5032–5052.

    Article  CAS  Google Scholar 

  4. Li, Z.; Hu, J. F.; Yang, L.; Zhang, X. Q.; Liu, X. H.; Wang, Z.; Li, Y. W. Integrated POSS-dendrimer nanohybrid materials: Current status and future perspective. Nanoscale 2020, 12, 11395–11415.

    Article  CAS  Google Scholar 

  5. Pan, C. F.; Markvicka, E. J.; Malakooti, M. H.; Yan, J. J.; Hu, L. M.; Matyjaszewski, K.; Majidi, C. A liquid-metal-elastomer nanocomposite for stretchable dielectric materials. Adv. Mater. 2019, 31, 1900663.

    Article  Google Scholar 

  6. Yao, X. Y.; Wang, J.; Jiao, D. J.; Huang, Z. Z.; Mhirsi, O.; Lossada, F.; Chen, L. S.; Haehnle, B.; Kuehne, A. J. C.; Ma, X. et al. Room-temperature phosphorescence enabled through nacre-mimetic nanocomposite design. Adv. Mater. 2021, 33, 2005973.

    Article  CAS  Google Scholar 

  7. Saveleva, M. S.; Eftekhari, K.; Abalymov, A.; Douglas, T. E. L.; Volodkin, D.; Parakhonskiy, B. V.; Skirtach, A. G. Hierarchy of hybrid materials—The place of inorganics-in-organics in it, their composition and applications. Front. Chem. 2019, 7, 179.

    Article  CAS  Google Scholar 

  8. Wu, H.; Yang, H. K.; Wang, W. Covalently-linked polyoxometalate-polymer hybrids: Optimizing synthesis, appealing structures and prospective applications. New J. Chem. 2016, 40, 886–897.

    Article  CAS  Google Scholar 

  9. Sharp, K. G. Inorganic/organic hybrid materials. Adv. Mater. 1998, 10, 1243–1248.

    Article  CAS  Google Scholar 

  10. Shahadat, M.; Teng, T. T.; Rafatullah, M.; Arshad, M. Titanium-based nanocomposite materials: A review of recent advances and perspectives. Colloids Surf. B Biointerfaces 2015, 126, 121–137.

    Article  CAS  Google Scholar 

  11. Zou, H.; Wu, S. S.; Shen, J. Polymer/silica nanocomposites: Preparation, characterization, properties, and applications. Chem. Rev. 2008, 108, 3893–3957.

    Article  CAS  Google Scholar 

  12. Pinargote, N. W. S.; Smirnov, A.; Peretyagin, N.; Seleznev, A.; Peretyagin, P. Direct ink writing technology (3D printing) of graphene-based ceramic nanocomposites: A review. Nanomaterials 2020, 10, 1300.

    Article  CAS  Google Scholar 

  13. Wu, H. Q.; Tang, B. B.; Wu, P. Y. Novel ultrafiltration membranes prepared from a multi-walled carbon nanotubes/polymer composite. J. Membr. Sci. 2010, 362, 374–383.

    Article  CAS  Google Scholar 

  14. Shi, Y. Q.; Liu, C.; Liu, L.; Fu, L. B.; Yu, B.; Lv, Y. C.; Yang, F. Q.; Song, P. A. Strengthening, toughing and thermally stable ultra-thin MXene nanosheets/polypropylene nanocomposites via nanoconfinement. Chem. Eng. J. 2019, 378, 122267.

    Article  Google Scholar 

  15. Mallakpour, S.; Naghdi, M. Polymer/SiO2 nanocomposises: Production and applications. Prog. Mater. Sci. 2018, 97, 409–447.

    Article  CAS  Google Scholar 

  16. Novak, B. M. Hybrid nanocomposite materials—Between inorganic glasses and organic polymers. Adv. Mater. 1993, 5, 422–433.

    Article  CAS  Google Scholar 

  17. Ngoi, K. H.; Wong, J. C.; Chia, C H.; Jin, K. S.; Kim, H.; Kim, H. C.; Kim, H. J.; Ree, M. Inorganic-organic nanocomposite networks: Structure, curing reaction, properties, and hard coating performance. Compos. Sci. Technol. 2022, 218, 109112.

    Article  CAS  Google Scholar 

  18. Yeh, J. M.; Hsieh, C. F.; Yeh, C. W.; Wu, M. J.; Yang, H. C. Organic base-catalyzed sol-gel route to prepare PMMA-silica hybrid materials. Polym. Int. 2007, 56, 343–349.

    Article  CAS  Google Scholar 

  19. Yeh, J. M.; Weng, C. J.; Liao, W. J.; Mau, Y. W. Anticorrosively enhanced PMMA-SiO2 hybrid coatings prepared from the sol-gel approach with MSMA as the coupling agent. Surf. Coat. Technol. 2006, 201, 1788–1795.

    Article  CAS  Google Scholar 

  20. Fu, S. Y.; Zhu, M.; Zhu, Y. F. Organosilicon polymer-derived ceramics: An overview. J. Adv. Ceram. 2019, 8, 457–478.

    Article  CAS  Google Scholar 

  21. Vakifahmetoglu, C.; Zeydanli, D.; Colombo, P. Porous polymer derived ceramics. Mater. Sci. Eng. R Rep. 2016, 106, 1–30.

    Article  Google Scholar 

  22. Kozuka, H.; Nakajima, K.; Uchiyama, H. Superior properties of silica thin films prepared from perhydropolysilazane solutions at room temperature in comparison with conventional alkoxide-derived silica gel films. ACS Appl. Mater. Interfaces 2013, 5, 8329–8336.

    Article  CAS  Google Scholar 

  23. Li, P. F.; Zhang, Y. L.; Guo, Y. L.; Jiang, L.; Zhang, Z. B.; Xu, C. H. Resistance switching behavior of a perhydropolysilazane-derived SiOx-based memristor. J. Phys. Chem. Lett. 2021, 12, 10728–10734.

    Article  CAS  Google Scholar 

  24. Li, P. F.; Wang, D.; Zhang, Z. B.; Guo, Y. L.; Jiang, L.; Xu, C. H. Room-temperature, solution-processed SiOx via photochemistry approach for highly flexible resistive switching memory. ACS Appl. Mater. Interfaces 2020, 12, 56186–56194.

    Article  CAS  Google Scholar 

  25. Zhang, Z. B.; Shao, Z. H.; Luo, Y. M.; An, P. Y.; Zhang, M. Y.; Xu, C. H. Hydrophobic, transparent and hard silicon oxynitride coating from perhydropolysilazane. Polym. Int. 2015, 64, 971–978.

    Article  CAS  Google Scholar 

  26. Braun, F.; Willner, L.; Hess, M.; Kosfeld, R. Synthesis and characterization of oligosiloxanes with hydroxyalkyl substituents. J. Organomet. Chem. 1989, 366, 53–56.

    Article  CAS  Google Scholar 

  27. Prager, L.; Wennrich, L.; Heller, R.; Knolle, W.; Naumov, S.; Prager, A.; Decker, D.; Liebe, H.; Buchmeiser, M. R. Vacuum-UV irradiation-based formation of methyl-Si-O-Si networks from poly(1, 1-dimethylsilazane-co-1-methylsilazane). Chem.—Eur. J. 2009, 15, 675–683.

    Article  CAS  Google Scholar 

  28. Prager, L.; Dierdorf, A.; Liebe, H.; Naumov, S.; Stojanovic, S.; Heller, R.; Wennrich, L.; Buchmeiser, M. R. Conversion of perhydropolysilazane into a SiOx network triggered by vacuum ultraviolet irradiation: Access to flexible, transparent barrier coatings. Chem.—Eur. J. 2007, 13, 8522–8529.

    Article  CAS  Google Scholar 

  29. Ashurbekova K.; Ashurbekova, K.; Saric, I.; Gobbi, M.; Modin, E.; Chuvilin, A.; Petravic, M.; Abdulagatov, I.; Knez, M. Ultrathin hybrid SiAlCOH dielectric films through ring-opening molecular layer deposition of cyclic tetrasiloxane. Chem. Mater. 2021, 33, 1022–1030.

    Article  CAS  Google Scholar 

  30. Balestrat, M.; Lale, A.; Bezerra, A. V. A.; Proust, V.; Awin, E. W.; Machado, R. A. F.; Carles, P.; Kumar, R.; Gervais, C.; Bernard, S. Insitu synthesis and characterization of nanocomposites in the Si-Ti-N and Si-Ti-C systems. Molecules 2020, 25, 5236.

    Article  CAS  Google Scholar 

  31. Je, S. Y.; Son, B. G.; Kim, H. G.; Park, M. Y.; Do, L. M.; Choi, R.; Jeong, J. K. Solution-processable LaZrOx/SiO2 gate dielectric at low temperature of 180 °C for high-performance metal oxide field-effect transistors. ACS Appl. Mater. Interfaces 2014, 6, 18693–18703.

    Article  CAS  Google Scholar 

  32. Bashouti, M. Y.; Paska, Y.; Puniredd, S. R.; Stelzner, T.; Christiansen, S.; Haick, H. Silicon nanowires terminated with methyl functionalities exhibit stronger Si-C bonds than equivalent 2D surfaces. Phys. Chem. Chem. Phys. 2009, 11, 3845–3848.

    Article  CAS  Google Scholar 

  33. Stribeck, N. X-ray Scattering of Soft Matter; Springer: Berlin, Heidelberg, 2007.

    Google Scholar 

  34. Choi, G. M.; Jin, J.; Shin, D.; Kim, Y. H.; Ko, J. H.; Im, H. G.; Jang, J.; Jang, D.; Bae, B. S. Flexible hard coating: Glass-like wear resistant, yet plastic-like compliant, transparent protective coating for foldable displays. Adv. Mater. 2017, 29, 1700205.

    Article  Google Scholar 

  35. Zhang, K. K.; Huang, S. S.; Wang, J. D.; Liu, G. J. Transparent omniphobic coating with glass-like wear resistance and polymer-like bendability. Angew. Chem., Int. Ed. 2019, 58, 12004–12009.

    Article  CAS  Google Scholar 

  36. Barroso, G.; Döring, M.; Horcher, A.; Kienzle, A.; Motz, G. Polysilazane-based coatings with anti-adherent properties for easy release of plastics and composites from metal molds. Adv. Mater. Interfaces 2020, 7, 1901952.

    Article  CAS  Google Scholar 

  37. Wang, K. S.; Günthner, M.; Motz, G.; Flinn, B. D.; Bordia, R. K. Control of surface energy of silicon oxynitride films. Langmuir 2013, 29, 2889–2896.

    Article  CAS  Google Scholar 

  38. Coan, T.; Barroso, G. S.; Machado, R. A. F.; de Souza, F. S.; Spinelli, A.; Motz, G. A novel organic-inorganic PMMA/polysilazane hybrid polymer for corrosion protection. Prog. Org Coat. 2015, 89, 220–230.

    Article  CAS  Google Scholar 

  39. Augustinho, T. R.; Motz, G.; Ihlow, S.; Machado, R. A. F. Application of hybrid organic/inorganic polymers as coatings on metallic substrates. Mater. Res. Express 2016, 3, 095301.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from the Youth Innovation Promotion Association Chinese Academy of Sciences (CAS) and the National Natural Science Foundation of China (No. 21922308).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zongbo Zhang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, X., Li, P., Liu, G. et al. “Nanocompoundsite”: Nano phased polymer dispersed in inorganic matrix via covalent bonds. Nano Res. 15, 6582–6589 (2022). https://doi.org/10.1007/s12274-022-4233-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4233-6

Keywords

Navigation