Skip to main content
Log in

An isolation strategy to anchor atomic Ni or Co cocatalysts on TiO2(A) for photocatalytic hydrogen production

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

TiO2 has been considered as an ideal photocatalyst for water splitting. However, narrow light absorbance, low charge separation efficiency, and rare surface active sites lead to the low photocatalytic efficiency of TiO2. Although extensive research attempted to improve the situation, there is still lack of method for constructing high active and noble-metal-free TiO2 photocatalyst for H2 evolution reactions (HER). In this work, we loaded single atomic (SA) Ni (or Co) on the surface of anatase TiO2 (TiO2(A)) nanosheets by an isolation strategy. Ethylene diamine tetraacetic acid and ethylene glycol (EDTA-EG) compounds were used to chelate metal ions in solution and form carbon quantum dots in the following thermal treatment to isolate the metal ions on surface of TiO2(A). The prepared Ni SA/TiO2(A) catalyst owned a “skin wrapped body” structure with in-situ formed two-dimensional (2D) heterojunction facilitating the fast electron transfer. As a result, the Ni SA/TiO2(A) catalyst showed a high H2 evolution rate of 2,900 µmol·g−1·h−1. This work provides an isolation strategy for constructing promising single-atom metal catalyst for photocatalysis and beyond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xiang, G. L.; Li, T. Y.; Zhuang, J.; Wang, X. Large-scale synthesis of metastable TiO2(B) nanosheets with atomic thickness and their photocatalytic properties. Chem. Commun. 2010, 46, 6801–6803.

    Article  CAS  Google Scholar 

  2. Wang, P.; Yi, Z. X.; Zhang, J. J.; Cai, Z. Y.; Lyu, B.; Yang, J. H.; Wang, X. Y. In-situ photosynthetic route to tailor point defects in TiO2(B) nanosheets for visible light-driven photocatalytic hydrogen production. ChemCatChem 2019, 11, 4252–4255.

    Article  Google Scholar 

  3. Di, T. M.; Zhang, J. F.; Cheng, B.; Yu, J. G.; Xu, J. S. Hierarchically nanostructured porous TiO2(B) with superior photocatalytic CO2 reduction activity. Sci. China Chem. 2018, 61, 344–350.

    Article  CAS  Google Scholar 

  4. Zhang, Q. Q.; Guan, J. Q. Applications of single-atom catalysts. Nano Res. 2022, 15, 38–70.

    Article  CAS  Google Scholar 

  5. Liu, P. X.; Zhao, Y.; Qin, R. X.; Mo, S. G.; Chen, G. X.; Gu, L.; Chevrier, D. M.; Zhang, P.; Guo, Q.; Zang, D. D. et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 2016, 352, 797–800.

    Article  CAS  Google Scholar 

  6. Jin, S.; Ni, Y. X.; Hao, Z. M.; Zhang, K.; Lu, Y.; Yan, Z. H.; Wei, Y. J.; Lu, Y. R.; Chan, T. S.; Chen, J. A universal graphene quantum dot tethering design strategy to synthesize single-atom catalysts. Angew. Chem., Int. Ed. 2020, 59, 21885–21889.

    Article  CAS  Google Scholar 

  7. Liang, J. W.; Liu, Y. X.; Liu, R. Z.; Zheng, S. F.; Si, Z. C.; Weng, D.; Kang, F. Y. Stable Pt atomic clusters on carbon nanotubes grafted with carbon quantum dots as electrocatalyst for H2 evolution in acidic electrolyte. Nano Select 2021, 2, 2126–2134.

    Article  CAS  Google Scholar 

  8. Wan, J. W.; Chen, W. X.; Jia, C. Y.; Zheng, L. R.; Dong, J. C.; Zheng, X. S.; Wang, Y.; Yan, W. S.; Chen, C.; Peng, Q. et al. Defect effects on TiO2 nanosheets: Stabilizing single atomic site Au and promoting catalytic properties. Adv. Mater. 2018, 30, 1705369.

    Article  Google Scholar 

  9. Tian, S. B.; Gong, W. B.; Chen, W. X.; Lin, N.; Zhu, Y. Q.; Feng, Q. C.; Xu, Q.; Fu, Q.; Chen, C.; Luo, J. et al. Regulating the catalytic performance of single-atomic-site Ir catalyst for biomass conversion by metal-support interactions. ACS Catal. 2019, 9, 5223–5230.

    Article  CAS  Google Scholar 

  10. Chen, Y. J.; Ji, S. F.; Sun, W. M.; Lei, Y. P.; Wang, Q. C.; Li, A.; Chen, W. X.; Zhou, G.; Zhang, Z. D.; Wang, Y. et al. Engineering the atomic interface with single platinum atoms for enhanced photocatalytic hydrogen production. Angew. Chem., Int. Ed. 2020, 59, 1295–1301.

    Article  CAS  Google Scholar 

  11. Thang, H. V.; Pacchioni, G.; Derita, L.; Christopher, P. Nature of stable single atom Pt catalysts dispersed on anatase TiO2. J. Catal. 2018, 367, 104–114.

    Article  CAS  Google Scholar 

  12. Matsubu, J. C.; Yang, V. N.; Christopher, P. Isolated metal active site concentration and stability control catalytic CO2 reduction selectivity. J. Am. Chem. Soc. 2015, 137, 3076–3084.

    Article  CAS  Google Scholar 

  13. Liu, P. X.; Zhao, Y.; Qin, R. X.; Mo, S. G.; Chen, G. X.; Gu, L.; Chevrier, D. M.; Zhang, P.; Guo, Q.; Zang, D. D. et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 2016, 352, 797–800.

    Article  CAS  Google Scholar 

  14. Kessler, F. K.; Zheng, Y.; Schwarz, D.; Merschjann, C.; Schnick, W.; Wang, X. C.; Bojdys, M. J. Functional carbon nitride materials-design strategies for electrochemical devices. Nat. Rev. Mater. 2017, 2, 17030.

    Article  CAS  Google Scholar 

  15. Idriss, H. The elusive photocatalytic water splitting reaction using sunlight on suspended nanoparticles: Is there a way forward? Catal. Sci. Technol. 2020, 10, 304–310.

    Article  CAS  Google Scholar 

  16. Canu, G.; Buscaglia, V. Hydrothermal synthesis of strontium titanate: Thermodynamic considerations, morphology control and crystallisation mechanisms. CrystEngComm 2017, 19, 3867–3891.

    Article  CAS  Google Scholar 

  17. Shi, R.; Dai, X.; Li, W. F.; Lu, F.; Liu, Y.; Qu, H. H.; Li, H.; Chen, Q. Y.; Tian, H.; Wu, E. H. et al. Hydroxyl-group-dominated graphite dots reshape laser desorption/ionization mass spectrometry for small biomolecular analysis and imaging. ACS Nano 2017, 11, 9500–9513.

    Article  CAS  Google Scholar 

  18. Wang, C.; Sun, M.; Zhao, Y. M.; Huo, M. X.; Wang, X. Z.; Elimelech, M. Photo-electrochemical osmotic system enables simultaneous metal recovery and electricity generation from wastewater. Environ. Sci. Technol. 2021, 55, 604–613.

    Article  CAS  Google Scholar 

  19. Mamaghani, A. H.; Haghighat, F.; Lee, C. S. Photocatalytic degradation of VOCs on various commercial titanium dioxides: Impact of operating parameters on removal efficiency and byproducts generation. Build. Environ 2018, 138, 275–282.

    Article  Google Scholar 

  20. Ren, Y. J.; Tang, Y.; Zhang, L. L.; Liu, X. Y.; Li, L.; Miao, S.; Su, D. S.; Wang, A. Q.; Li, J.; Zhang, T. Unraveling the coordination structure-performance relationship in Pt1/Fe2O3 single-atom catalyst. Nat. Commun. 2019, 10, 4500.

    Article  Google Scholar 

  21. Yuan, W. Y.; Ma, Y. Y.; Wu, H.; Cheng, L. F. Single-atom catalysts for CO oxidation, CO2 reduction, and O2 electrochemistry. J. Energy Chem. 2022, 65, 254–279.

    Article  CAS  Google Scholar 

  22. Li, J. P.; Yang, S. W.; Deng, Y.; Chai, P. W.; Yang, Y. C.; He, X. Y.; Xie, X. M.; Kang, Z. H.; Ding, G. Q.; Zhou, H. F. et al. Emancipating target-functionalized carbon dots from autophagy vesicles for a novel visualized tumor therapy. Adv. Funct. Mater. 2018, 28, 1800881.

    Article  Google Scholar 

  23. Ming, H.; Ma, Z.; Liu, Y.; Pan, K. M.; Yu, H.; Wang, F.; Kang, Z. H. Large scale electrochemical synthesis of high quality carbon nanodots and their photocatalytic property. Dalton Trans. 2012, 41, 9526–9531.

    Article  CAS  Google Scholar 

  24. Xiao, M.; Zhang, L.; Luo, B.; Lyu, M.; Wang, Z. L.; Huang, H. M.; Wang, S. C.; Du, A. J.; Wang, L. Z. Molten-salt-mediated synthesis of an atomic nickel Co-catalyst on TiO2 for improved photocatalytic H2 evolution. Angew. Chem., Int. Ed. 2020, 59, 7230–7234.

    Article  CAS  Google Scholar 

  25. Yang, J. J.; Sun, Z. Z.; Yan, K. L.; Dong, H. Z.; Dong, H. Y.; Cui, J. K.; Gong, X. T.; Han, S. L.; Huang, L. M. Single-atom-nickel photocatalytic site-selective sulfonation of enamides to access amidosulfones. Green Chem. 2021, 2756–2762.

    Google Scholar 

  26. Antonietti, M.; Lopez-Salas, N.; Primo, A. Adjusting the structure and electronic properties of carbons for metal-free carbocatalysis of organic transformations. Adv. Mater. 2019, 31, 1805719.

    Article  Google Scholar 

  27. Yan, Y. B.; Gong, J.; Chen, J.; Zeng, Z. P.; Huang, W.; Pu, K. Y.; Liu, J. Y.; Chen, P. Recent advances on graphene quantum dots: From chemistry and physics to applications. Adv. Mater. 2019, 31, 1808283.

    Article  Google Scholar 

  28. Tian, J. Q.; Chen, J.; Liu, J. Y.; Tian, Q. H.; Chen, P. Graphene quantum dot engineered nickel-cobalt phosphide as highly efficient bifunctional catalyst for overall water splitting. Nano Energy 2018, 48, 284–291.

    Article  CAS  Google Scholar 

  29. Tetsuka, H.; Asahi, R.; Nagoya, A.; Okamoto, K.; Tajima, I.; Ohta, R.; Okamoto, A. Optically tunable amino-functionalized graphene quantum dots. Adv. Mater. 2012, 24, 5333–5338.

    Article  CAS  Google Scholar 

  30. Zhao, Q.; Sun, J.; Li, S. C.; Huang, C. P.; Yao, W. F.; Chen, W.; Zeng, T.; Wu, Q.; Xu, Q. J. Single nickel atoms anchored on nitrogen-doped graphene as a highly active cocatalyst for photocatalytic H2 evolution. ACS Catal. 2018, 8, 11863–11874.

    Article  CAS  Google Scholar 

  31. Chen, J. Y.; Zhuang, P. Y.; Ge, Y. C.; Chu, H.; Yao, L. Y.; Cao, Y. D.; Wang, Z.; Chee, M. O. L.; Dong, P.; Shen, J. F. et al. Sublimation-vapor phase pseudomorphic transformation of template-directed MOFs for efficient oxygen evolution reaction. Adv. Funct. Mater. 2019, 29, 1903875.

    Article  Google Scholar 

  32. Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J. L.; Horiuchi, Y.; Anpo, M.; Bahnemann, D. W. Understanding TiO2 photocatalysis: Mechanisms and materials. Chem. Rev. 2014, 114, 9919–9986.

    Article  CAS  Google Scholar 

  33. Chen, X. B.; Liu, L.; Yu, P. Y.; Mao, S. S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 2011, 331, 746–750.

    Article  CAS  Google Scholar 

  34. Sun, T. T.; Zhao, S.; Chen, W. X.; Zhai, D.; Dong, J. C.; Wang, Y.; Zhang, S. L.; Han, A. J.; Gu, L.; Yu, R. et al. Single-atomic cobalt sites embedded in hierarchically ordered porous nitrogen-doped carbon as a superior bifunctional electrocatalyst. Proc. Natl. Acad. Sci. USA 2018, 115, 12692–12697.

    Article  CAS  Google Scholar 

  35. Scanlon, D. O.; Dunnill, C. W.; Buckeridge, J.; Shevlin, S. A.; Logsdail, A. J.; Woodley, S. M.; Catlow, C. R. A.; Powell, M. J.; Palgrave, R. G.; Parkin, I. P. et al. Band alignment of rutile and anatase TiO2. Nat. Mater. 2013, 12, 798–801.

    Article  CAS  Google Scholar 

  36. Delgado, D.; Solsona, B.; Sanchis, R.; Rodríguez-Castellón, E.; Nieto, J. M. L. Oxidative dehydrogenation of ethane on diluted or promoted nickel oxide catalysts: Influence of the promoter/diluter. Catal. Today 2021, 363, 27–35.

    Article  CAS  Google Scholar 

  37. Liu, X. G.; Bi, Y. P. Synergistic effect of Ti3+ doping and facet regulation over Ti3+-doped TiO2 nanosheets with enhanced photoreactivity. Catal. Sci. Technol. 2018, 8, 3876–3882.

    Article  CAS  Google Scholar 

  38. Zhang, Y. J.; Liu, J. M.; Zhang, Y.; Bi, Y. P. Relationship between interatomic electron transfer and photocatalytic activity of TiO2. Nano Energy 2018, 51, 504–512.

    Article  CAS  Google Scholar 

  39. Xiao, H.; Xue, S. F.; Zhang, J. J.; Zhao, M.; Ma, J. C.; Chen, S.; Zheng, Z. F.; Jia, J. F.; Wu, H. S. Facile electrolytic synthesis of Pt and carbon quantum dots coloaded multiwall carbon nanotube as highly efficient electrocatalyst for hydrogen evolution and ethanol oxidation. Chem. Eng. J. 2021, 408, 127271.

    Article  CAS  Google Scholar 

  40. Xu, A. W.; Gao, Y.; Liu, H. Q. The preparation, characterization, and their photocatalytic activities of rare-earth-doped TiO2 nanoparticles. J. Catal. 2002, 207, 151–157.

    Article  CAS  Google Scholar 

  41. Landon, J.; Demeter, E.; İnoğlu, N.; Keturakis, C.; Wachs, I. E.; Vasić, R.; Frenkel, A. I.; Kitchin, J. R. Spectroscopic characterization of mixed Fe-Ni oxide electrocatalysts for the oxygen evolution reaction in alkaline electrolytes. ACS Catal. 2012, 2, 1793–1801.

    Article  CAS  Google Scholar 

  42. Hu, C. C.; Wu, Y. R. Bipolar performance of the electroplated iron-nickel deposits for water electrolysis. Mater. Chem. Phys. 2003, 82, 588–596.

    Article  CAS  Google Scholar 

  43. Yin, P. Q.; Yao, T.; Wu, Y. E.; Zheng, L. R.; Lin, Y.; Liu, W.; Ju, H. X.; Zhu, J. F.; Hong, X.; Deng, Z. X. et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem., Int. Ed. 2016, 128, 10958–10963.

    Article  Google Scholar 

  44. Huang, D. H.; He, N.; Zhu, Q. H.; Chu, C. H.; Weon, S.; Rigby, K.; Zhou, X. C.; Xu, L.; Niu, J. F.; Stavitski, E. et al. Conflicting roles of coordination number on catalytic performance of single-atom Pt catalysts. ACS Catal. 2021, 11, 5586–5592.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We genuinely appreciate financial support from the Strategic Emerging Industry Development Funds of Shenzhen (No. JCYJ20170817161720484).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhichun Si or Feiyu Kang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, S., Pei, M., Liu, Y. et al. An isolation strategy to anchor atomic Ni or Co cocatalysts on TiO2(A) for photocatalytic hydrogen production. Nano Res. 15, 5848–5856 (2022). https://doi.org/10.1007/s12274-022-4217-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4217-6

Keywords

Navigation