Skip to main content
Log in

Hot electron assisted photoelectrochemical water splitting from Au-decorated ZnO@TiO2 nanorods array

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Engineering of semiconductor nanomaterials is critical to enhance the photoelectrochemical (PEC) performance for water splitting. However, semiconductors often show the low light absorption, slow charge transfer, and easy recombination of carriers, thus leading to the low catalytic efficiency. In this work, we show facile synthesis of ZnO@TiO2 core-shell nanorods (NRs) arrays modified with Au nanoparticles (NPs) as the photoelectrode for PEC water splitting. Impressively, the obtained ZnO@TiO2 (15 nm)/Au(8 nm) array shows the maximum photocurrent density of 3.14 mA/cm2 at 1.2 V vs. reversible hydrogen electrode (RHE), 2.6 times and 1.7 times higher than those obtained from ZnO NRs and ZnO@TiO2(15 nm) arrays. The electric-field simulation and transient absorption spectroscopy show that the Au-decorated core-shell nanostructures have an enhanced hot electron generation and prolonged decay time, indicating effective charge transfer and recombination inhibition of carriers. This work provides an efficient preparation strategy for photoelectrodes as well as great potential for the large-scale development of this technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, S. S.; Takata, T.; Domen, K. Particulate photocatalysts for overall water splitting. Nat. Rev. Mater. 2017, 2, 17050.

    Article  CAS  Google Scholar 

  2. Moniz, S. J. A.; Shevlin, S. A.; Martin, D. J.; Guo, Z. X.; Tang, J. W. Visible-light driven heterojunction photocatalysts for water splitting—A critical review. Energy Environ. Sci. 2015, 8, 731–759.

    Article  CAS  Google Scholar 

  3. Chen, J. Q.; Yang, D. H.; Song, D.; Jiang, J. H.; Ma, A. B.; Hu, M. Z.; Ni, C. Y. Recent progress in enhancing solar-to-hydrogen efficiency. J. Power Sources 2015, 280, 649–666.

    Article  CAS  Google Scholar 

  4. Valenti, M.; Jonsson, M. P.; Biskos, G.; Schmidt-Ott, A.; Smith, W. A. Plasmonic nanoparticle-semiconductor composites for efficient solar water splitting. J. Mater. Chem. A 2016, 4, 17891–17912.

    Article  CAS  Google Scholar 

  5. Li, C. P.; Li, S. R.; Xu, C.; Ma, K. S. Plasmon-enhanced unidirectional charge transfer for efficient solar water oxidation. Nanoscale 2021, 13, 4654–4659.

    Article  CAS  Google Scholar 

  6. Yuan, L.; Han, C.; Yang, M. Q.; Xu, Y. J. Photocatalytic water splitting for solar hydrogen generation: Fundamentals and recent advancements. Int. Rev. Phys. Chem. 2016, 35, 1–36.

    Article  CAS  Google Scholar 

  7. Li, M.; Chen, L.; Zhou, C.; Jin, C. C.; Su, Y. J.; Zhang, Y. F. 3D highly efficient photonic micro concave-pit arrays for enhanced solar water splitting. Nanoscale 2019, 11, 18071–18080.

    Article  CAS  Google Scholar 

  8. Liu, Z. F.; Zhang, J.; Yan, W. G. Enhanced photoelectrochemical water splitting of photoelectrode simultaneous decorated with cocatalysts based on spatial charge separation and transfer. ACS Sustainable Chem. Eng. 2018, 6, 3565–3574.

    Article  CAS  Google Scholar 

  9. Jeong, K.; Deshmukh, P. R.; Park, J.; Sohn, Y.; Shin, W. G. ZnO−TiO2 core-shell nanowires: A sustainable photoanode for enhanced photoelectrochemical water splitting. ACS Sustainable Chem. Eng. 2018, 6, 6518–6526.

    Article  CAS  Google Scholar 

  10. Liu, Y. C.; Yan, X. Q.; Kang, Z.; Li, Y.; Shen, Y. W.; Sun, Y. H.; Wang, L.; Zhang, Y. Synergistic effect of surface plasmonic particles and surface passivation layer on ZnO nanorods array for improved photoelectrochemical water splitting. Sci. Rep. 2016, 6, 29907.

    Article  CAS  Google Scholar 

  11. Khan, H. R.; Akram, B.; Aamir, M.; Malik, M. A.; Tahir, A. A.; Choudhary, M. A.; Akhtar, J. Fabrication of Ni2+ incorporated ZnO photoanode for efficient overall water splitting. Appl. Surf. Sci. 2019, 490, 302–308.

    Article  CAS  Google Scholar 

  12. Han, H.; Karlicky, F.; Pitchaimuthu, S.; Shin, S. H. R.; Chen, A. P. Highly ordered N-doped carbon dots photosensitizer on metal-organic framework-decorated ZnO nanotubes for improved photoelectrochemical water splitting. Small 2019, 15, 1902771.

    Article  Google Scholar 

  13. Zhang, C. L.; Shao, M. F.; Ning, F. Y.; Xu, S. M.; Li, Z. H.; Wei, M.; Evans, D. G.; Duan, X. Au nanoparticles sensitized ZnO nanorod@nanoplatelet core-shell arrays for enhanced photoelectrochemical water splitting. Nano Energy 2015, 12, 231–239.

    Article  Google Scholar 

  14. Li, W.; Elzatahry, A.; Aldhayan, D.; Zhao, D. Y. Core-shell structured titanium dioxide nanomaterials for solar energy utilization. Chem. Soc. Rev. 2018, 47, 8203–8237.

    Article  CAS  Google Scholar 

  15. Hsu, Y. K.; Chen, Y. C.; Lin, Y. G. Novel ZnO/Fe2O3 core-shell nanowires for photoelectrochemical water splitting. ACS Appl. Mater. Interfaces 2015, 7, 14157–14162.

    Article  CAS  Google Scholar 

  16. Zhang, X.; Liu, Y.; Kang, Z. H. 3D branched ZnO nanowire arrays decorated with plasmonic au nanoparticles for high-performance photoelectrochemical water splitting. ACS Appl. Mater. Interfaces 2014, 6, 4480–4489.

    Article  CAS  Google Scholar 

  17. Lee, J. W.; Cho, K. H.; Yoon, J. S.; Kim, Y. M.; Sung, Y. M. Photoelectrochemical water splitting using one-dimensional nanostructures. J. Mater. Chem. A 2021, 9, 21576–21606.

    Article  CAS  Google Scholar 

  18. Hernández, S.; Cauda, V.; Chiodoni, A.; Dallorto, S.; Sacco, A.; Hidalgo, D.; Celasco, E.; Pirri, C. F. Optimization of 1D ZnO@TiO2 core-shell nanostructures for enhanced photoelectrochemical water splitting under solar light illumination. ACS Appl. Mater. Interfaces 2014, 6, 12153–12167.

    Article  Google Scholar 

  19. Kargar, A.; Jing, Y.; Kim, S. J.; Riley, C. T.; Pan, X. Q.; Wang, D. L. ZnO/CuO heterojunction branched nanowires for photoelectrochemical hydrogen generation. ACS Nano 2013, 7, 11112–11120.

    Article  CAS  Google Scholar 

  20. Mascaretti, L.; Dutta, A.; Kment, Š.; Shalaev, V. M.; Boltasseva, A.; Zbořil, R.; Naldoni, A. Plasmon-enhanced photoelectrochemical water splitting for efficient renewable energy storage. Adv. Mater. 2019, 31, 1805513.

    Article  Google Scholar 

  21. Xiao, F. X.; Liu, B. Plasmon-dictated photo-electrochemical water splitting for solar-to-chemical energy conversion: Current status and future perspectives. Adv. Mater. Interfaces 2018, 5, 1701098.

    Article  Google Scholar 

  22. Lee, J. B.; Choi, S.; Kim, J.; Nam, Y. S. Plasmonically-assisted nanoarchitectures for solar water splitting: Obstacles and breakthroughs. Nano Today 2017, 16, 61–81.

    Article  CAS  Google Scholar 

  23. Liu, G. H.; Du, K.; Xu, J. L.; Chen, G.; Gu, M. Y.; Yang, C. P.; Wang, K. Y.; Jakobsen, H. Plasmon-dominated photoelectrodes for solar water splitting. J. Mater. Chem. A 2017, 5, 4233–4253.

    Article  CAS  Google Scholar 

  24. Ghosh, D.; Roy, K.; Sarkar, K.; Devi, P.; Kumar, P. Surface plasmon-enhanced carbon dot-embellished multifaceted Si(111) nanoheterostructure for photoelectrochemical water splitting. ACS Appl. Mater. Interfaces 2020, 12, 28792–28800.

    Article  CAS  Google Scholar 

  25. Jiang, W. Y.; Wu, X. X.; Chang, J. Q.; Ma, Y. H.; Song, L. T.; Chen, Z. X.; Liang, C.; Liu, X. F.; Zhang, Y. Integrated heteronanoelectrodes for plasmon-enhanced electrocatalysis of hydrogen evolution. Nano Res. 2021, 14, 1195–1201.

    Article  CAS  Google Scholar 

  26. Moon, C. W.; Choi, M. J.; Hyun, J. K.; Jang, H. W. Enhancing photoelectrochemical water splitting with plasmonic Au nanoparticles. Nanoscale Adv. 2021, 3, 5981–6006.

    Article  CAS  Google Scholar 

  27. Han, C.; Quan, Q.; Chen, H. M.; Sun, Y. G.; Xu, Y. J. Progressive design of plasmonic metal-semiconductor ensemble toward regulated charge flow and improved Vis-NIR-driven solar-to-chemical conversion. Small 2017, 13, 1602947.

    Article  Google Scholar 

  28. Zhang, N.; Han, C.; Fu, X. Z.; Xu, Y. J. Function-oriented engineering of metal-based nanohybrids for photoredox catalysis: Exerting plasmonic effect and beyond. Chem 2018, 4, 1832–1861.

    Article  CAS  Google Scholar 

  29. Zhang, N.; Han, C.; Xu, Y. J.; FoleyIV, J. J.; Zhang, D. T.; Codrington, J.; Gray, S. K.; Sun, Y. G. Near-field dielectric scattering promotes optical absorption by platinum nanoparticles. Nat. Photon. 2016, 10, 473–482.

    Article  Google Scholar 

  30. Liu, C.; Wu, P. C.; Wu, K. L.; Meng, G. H.; Wu, J. N.; Hou, J.; Liu, Z. Y.; Guo, X. H. Advanced bi-functional CoPi co-catalyst-decorated g-C3N4 nanosheets coupled with ZnO nanorod arrays as integrated photoanodes. Dalton Trans. 2018, 47, 6605–6614.

    Article  CAS  Google Scholar 

  31. Kwiatkowski, M.; Bezverkhyy, I.; Skompska, M. ZnO nanorods covered with a TiO2 layer: Simple sol-gel preparation, and optical, photocatalytic and photoelectrochemical properties. J. Mater. Chem. A 2015, 3, 12748–12760.

    Article  CAS  Google Scholar 

  32. Guo, J.; Zhang, Y.; Shi, L.; Zhu, Y. F.; Mideksa, M. F.; Hou, K.; Zhao, W. S.; Wang, D. W.; Zhao, M. T.; Zhang, X. F. et al. Boosting hot electrons in hetero-superstructures for plasmon-enhanced catalysis. J. Am. Chem. Soc. 2017, 139, 17964–17972.

    Article  CAS  Google Scholar 

  33. Li, H. D.; Ali, W.; Wang, Z. C.; Mideksa, M. F.; Wang, F.; Wang, X. L.; Wang, L.; Tang, Z. Y. Enhancing hot-electron generation and transfer from metal to semiconductor in a plasmonic absorber. Nano Energy 2019, 63, 103873.

    Article  CAS  Google Scholar 

  34. Johnson, P. B.; Christy, R. W. Optical constants of the noble metals. Phys. Rev. B 1972, 6, 4370–4379.

    Article  CAS  Google Scholar 

  35. Li, H. X.; Li, Z. D.; Yu, Y. H.; Ma, Y. J.; Yang, W. G.; Wang, F.; Yin, X.; Wang, X. D. Surface-plasmon-resonance-enhanced photoelectrochemical water splitting from Au-nanoparticle-decorated 3D TiO2 nanorod architectures. J. Phys. Chem. C 2017, 121, 12071–12079.

    Article  CAS  Google Scholar 

  36. Tada, H.; Suzuki, F.; Ito, S.; Akita, T.; Tanaka, K.; Kawahara, T.; Kobayashi, H. Au-core/Pt-shell bimetallic cluster-loaded TiO2. 1. Adsorption of organosulfur compound. J. Phys. Chem. B 2002, 106, 8714–8720.

    Article  CAS  Google Scholar 

  37. Shao, D. L.; Sun, H. T.; Xin, G. Q.; Lian, J.; Sawyer, S. High quality ZnO-TiO2 core-shell nanowires for efficient ultraviolet sensing. Appl. Surf. Sci. 2014, 314, 872–876.

    Article  CAS  Google Scholar 

  38. Chiu, Y. H.; Chang, K. D.; Hsu, Y. J. Plasmon-mediated charge dynamics and photoactivity enhancement for Au-decorated ZnO nanocrystals. J. Mater. Chem. A 2018, 6, 4286–4296.

    Article  CAS  Google Scholar 

  39. Wang, X. L.; Morea, R.; Gonzalo, J.; Palpant, B. Coupling localized plasmonic and photonic modes tailors and boosts ultrafast light modulation by gold nanoparticles. Nano Lett. 2015, 15, 2633–2639.

    Article  CAS  Google Scholar 

  40. Wang, X. L.; Guillet, Y.; Selvakannan, P. R.; Remita, H.; Palpant, B. Broadband spectral signature of the ultrafast transient optical response of gold nanorods. J. Phys. Chem. C 2015, 119, 7416–7427.

    Article  CAS  Google Scholar 

  41. Link, S.; El-Sayed, M. A. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J. Phys. Chem. B 1999, 103, 8410–8426.

    Article  CAS  Google Scholar 

  42. Han, C.; Li, S. H.; Tang, Z. R.; Xu, Y. J. Tunable plasmonic core-shell heterostructure design for broadband light driven catalysis. Chem. Sci. 2018, 9, 8914–8922.

    Article  CAS  Google Scholar 

  43. Huang, Y. W.; Yu, Q. J.; Wang, J. Z.; Wang, J. N.; Yu, C. L.; Abdalla, J. T.; Zeng, Z.; Jiao, S. J.; Wang, D. B.; Gao, S. Y. Plasmon-enhanced self-powered UV photodetectors assembled by incorporating Ag@SiO2 core-shell nanoparticles into TiO2 nanocube photoanodes. ACS Sustainable Chem. Eng. 2018, 6, 438–446.

    Article  CAS  Google Scholar 

  44. Cheng, J. J.; Li, Y. W.; Plissonneau, M.; Li, J. G.; Li, J. Z.; Chen, R.; Tang, Z. K.; Pautrot-d’Alençon, L.; He, T. C.; Tréguer-Delapierre, M. et al. Plasmon-induced hot electron transfer in AgNW@TiO2@AuNPs nanostructures. Sci. Rep. 2018, 8, 14136.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21975060 and 21673053, X. L. W. and 52072354, H. Y. L.) and Youth Innovation Promotion Association CAS (X. L. W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoli Wang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Liu, H., Wang, F. et al. Hot electron assisted photoelectrochemical water splitting from Au-decorated ZnO@TiO2 nanorods array. Nano Res. 15, 5824–5830 (2022). https://doi.org/10.1007/s12274-022-4203-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4203-z

Keywords

Navigation