Skip to main content
Log in

Tunable ultrathin dual-phase P-doped Bi2MoO6 nanosheets for advanced lithium and sodium storage

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The construction of electrode materials for lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs) has gradually been an appealing and attractive technology in energy storage research field. In the present work, a facile strategy of synthesizing ultrathin amorphous/nanocrystal dual-phase P-doped Bi2MoO6 (denoted as P-BiMO) nanosheets via a one-step wet-chemical synthesis approach is explored. Quite distinct from conventional two-dimensional (2D) nanosheets, our newly developed ultrathin P-BiMO nanosheets exhibit a unique tunable amorphous/nanocrystalline dual-phase structure with several compelling advantages including fast ion exchange ability and superb volume change buffer capability. The experimental results reveal that our prepared P-BiMO-6 electrode delivers an excellent reversible capacity of 509.6 mA·g−1 after continuous 1,500 cycles at the current densities of 1,500 mA·g−1 and improved rate performance for LIBs. In the meanwhile, the P-BiMO-6 electrode also shows a reversible capacity of 300.6 mA·g−1 after 100 cycles at 50 mA·g−1 when being used as the SIBs electrodes. This present work uncovers an effective dual-phase nanosheet structure to improve the performance of batteries, providing an attractive paradigm to develop superior electrode materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, J. L.; Fleetwood, J.; Hawley, W. B.; Kays, W. From materials to cell: State-of-the-art and prospective technologies for lithium-ion battery electrode processing. Chem. Rev. 2022, 122, 903–956.

    Article  CAS  Google Scholar 

  2. Kundu, D.; Talaie, E.; Duffort, V.; Nazar, L. F. The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angew. Chem., Int. Ed. 2015, 54, 3431–3448.

    Article  CAS  Google Scholar 

  3. Dou, Q. Y.; Wu, N. Z.; Yuan, H. C.; Shin, K. H.; Tang, Y. B.; Mitlin, D.; Park, H. S. Emerging trends in anion storage materials for the capacitive and hybrid energy storage and beyond. Chem. Soc. Rev. 2021, 50, 6734–6789.

    Article  CAS  Google Scholar 

  4. Obrovac, M. N.; Chevrier, V. L. Alloy negative electrodes for Li-ion batteries. Chem. Rev. 2014, 114, 11444–11502.

    Article  CAS  Google Scholar 

  5. Wang, Y. F.; Yuan, H. M.; Zhu, Y. H.; Wang, Z. Q.; Hu, Z. W.; Xie, J. W.; Liao, C. Z.; Cheng, H.; Zhang, F. C.; Lu, Z. G. An all-in-one supercapacitor working at sub-zero temperatures. Sci. China Mater. 2020, 63, 660–666.

    Article  Google Scholar 

  6. Fan, E. S.; Li, L.; Wang, Z. P.; Lin, J.; Huang, Y. X.; Yao, Y.; Chen, R. J.; Wu, F. Sustainable recycling technology for Li-ion batteries and beyond: Challenges and future prospects. Chem. Rev. 2020, 120, 7020–7063.

    Article  CAS  Google Scholar 

  7. Cai, Y.; Wang, H. E.; Zhao, X.; Huang, F.; Wang, C.; Deng, Z.; Li, Y.; Cao, G. Z.; Su, B. L. Walnut-like porous core/shell TiO2 with hybridized phases enabling fast and stable lithium storage. ACS Appl. Mater. Interfaces 2017, 9, 10652–10663.

    Article  CAS  Google Scholar 

  8. Xia, T.; Zhang, W.; Li, W. J.; Oyler, N. A.; Liu, G.; Chen, X. B. Hydrogenated surface disorder enhances lithium ion battery performance. Nano Energy 2013, 2, 826–835.

    Article  CAS  Google Scholar 

  9. Lai, X.; Jin, C. Y.; Yi, W.; Han, X. B.; Feng, X. N.; Zheng, Y. J.; Ouyang, M. G. Mechanism, modeling, detection, and prevention of the internal short circuit in lithium-ion batteries: Recent advances and perspectives. Energy Stor. Mater. 2021, 35, 470–499.

    Google Scholar 

  10. Xiang, F. W.; Cheng, F.; Sun, Y. J.; Yang, X. P.; Lu, W.; Amal, R.; Dai, L. M. Recent advances in flexible batteries: From materials to applications. Nano Res. 2021, 1–34.

  11. Xia, T.; Zhang, W.; Murowchick, J. B.; Liu, G.; Chen, X. B. A facile method to improve the photocatalytic and lithium-ion rechargeable battery performance of TiO2 nanocrystals. Adv. Energy Mater. 2013, 3, 1516–1523.

    Article  CAS  Google Scholar 

  12. Yu, S. H.; Feng, X. R.; Zhang, N.; Seok, J.; Abruña, H. D. Understanding conversion-type electrodes for lithium rechargeable batteries. Acc. Chem. Res. 2018, 51, 273–281.

    Article  CAS  Google Scholar 

  13. Yue, L. C.; Ma, C. Q.; Yan, S. H.; Wu, Z. G.; Zhao, W. X.; Liu, Q.; Luo, Y. L.; Zhong, B. H.; Zhang, F.; Liu, Y. et al. Improving the intrinsic electronic conductivity of NiMoO4 anodes by phosphorous doping for high lithium storage. Nano Res. 2022, 15, 186–194.

    Article  CAS  Google Scholar 

  14. Zhang, Z. H.; Dong, S. M.; Cui, Z. L.; Du, A. B.; Li, G. C.; Cui, G. L. Rechargeable magnesium batteries using conversion-type cathodes: A perspective and minireview. Small Methods 2018, 2, 1800020.

    Article  Google Scholar 

  15. Ren, Q. Y.; Qin, N.; Liu, B.; Yao, Y.; Zhao, X.; Deng, Z.; Li, Y.; Dong, Y. C.; Qian, D.; Su, B. L. et al. An oxygen-deficient vanadium oxide@N-doped carbon heterostructure for sodium-ion batteries: Insights into the charge storage mechanism and enhanced reaction kinetics. J. Mater. Chem. A 2020, 8, 3450–3458.

    Article  CAS  Google Scholar 

  16. Zhao, X. X.; Wang, J. Y.; Yu, R. B.; Wang, D. Construction of multishelled binary metal oxides via coabsorption of positive and negative ions as a superior cathode for sodium-ion batteries. J. Am. Chem. Soc. 2018, 140, 17114–17119.

    Article  CAS  Google Scholar 

  17. Hu, J. X.; Xie, Y. Y.; Zheng, J. Q.; Lai, Y. Q.; Zhang, Z. A. Unveiling nanoplates-assembled Bi2MoO6 microsphere as a novel anode material for high performance potassium-ion batteries. Nano Res. 2020, 13, 2650–2657.

    Article  CAS  Google Scholar 

  18. Lu, Y.; Yu, L.; Lou, X. W. Nanostructured conversion-type anode materials for advanced lithium-ion batteries. Chem 2018, 4, 972–996.

    Article  CAS  Google Scholar 

  19. Sarkar, S.; Roy, S.; Zhao, Y. F.; Zhang, J. J. Recent advances in semimetallic pnictogen (As, Sb, Bi) based anodes for sodium-ion batteries: Structural design, charge storage mechanisms, key challenges and perspectives. Nano Res. 2021, 14, 3690–3723.

    Article  CAS  Google Scholar 

  20. Peng, L. L.; Xiong, P.; Ma, L.; Yuan, Y. F.; Zhu, Y.; Chen, D. H.; Luo, X. Y.; Lu, J.; Amine, K.; Yu, G. H. Holey two-dimensional transition metal oxide nanosheets for efficient energy storage. Nat. Commun. 2017, 8, 15139.

    Article  Google Scholar 

  21. Lyu, F. C.; Zeng, S. S.; Sun, Z. F.; Qin, N.; Cao, L. J.; Wang, Z. Y.; Jia, Z.; Wu, S. F.; Ma, F. X.; Li, M. C. et al. Lamellarly stacking porous N, P co-doped Mo2C/C nanosheets as high performance anode for lithium-ion batteries. Small 2019, 15, 1805022.

    Article  Google Scholar 

  22. Wang, Y. S.; Yu, X. Q.; Xu, S. Y.; Bai, J. M.; Xiao, R. J.; Hu, Y. S.; Li, H.; Yang, X. Q.; Chen, L. Q.; Huang, X. J. A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries. Nat. Commun. 2013, 4, 2365.

    Article  Google Scholar 

  23. Chernova, N. A.; Roppolo, M.; Dillon, A. C.; Whittingham, M. S. Layered vanadium and molybdenum oxides: Batteries and electrochromics. J. Mater. Chem. 2009, 19, 2526–2552.

    Article  CAS  Google Scholar 

  24. Mu, L. Q.; Xu, S. Y.; Li, Y. M.; Hu, Y. S.; Li, H.; Chen, L. Q.; Huang, X. J. Prototype sodium-ion batteries using an air-stable and Co/Ni-free O3-layered metal oxide cathode. Adv. Mater. 2015, 27, 6928–6933.

    Article  CAS  Google Scholar 

  25. Hu, J.; Wang, Z. Y.; Fu, Y.; Lyu, L. L.; Lu, Z. G.; Zhou, L. M. In situ assembly of MnO2 nanosheets on sulfur-embedded multichannel carbon nanofiber composites as cathodes for lithium-sulfur batteries. Sci. China Mater. 2020, 63, 728–738.

    Article  CAS  Google Scholar 

  26. Liu, J. P.; Li, Y. Y.; Huang, X. T.; Li, G. Y.; Li, Z. K. Layered double hydroxide nano- and microstructures grown directly on metal substrates and their calcined products for application as Li-ion battery electrodes. Adv. Funct. Mater. 2008, 18, 1448–1458.

    Article  CAS  Google Scholar 

  27. Pumera, M.; Sofer, Z.; Ambrosi, A. Layered transition metal dichalcogenides for electrochemical energy generation and storage. J. Mater. Chem. A 2014, 2, 8981–8987.

    Article  CAS  Google Scholar 

  28. Liang, X.; Garsuch, A.; Nazar, L. F. Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries. Angew. Chem., Int. Ed. 2015, 54, 3907–3911.

    Article  CAS  Google Scholar 

  29. Xie, Y.; Dall’Agnese, Y.; Naguib, M.; Gogotsi, Y.; Barsoum, M. W.; Zhuang, H. L.; Kent, P. R. C. Prediction and characterization of MXene nanosheet anodes for non-lithium-ion batteries. ACS Nano 2014, 8, 9606–9615.

    Article  CAS  Google Scholar 

  30. Er, D. Q.; Li, J. W.; Naguib, M.; Gogotsi, Y.; Shenoy, V. B. Ti3C2 MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries. ACS Appl. Mater. Interfaces 2014, 6, 11173–11179.

    Article  CAS  Google Scholar 

  31. Chen, L.; Zhou, G. M.; Liu, Z. B.; Ma, X. M.; Chen, J.; Zhang, Z. Y.; Ma, X. L.; Li, F.; Cheng, H. M.; Ren, W. C. Scalable clean exfoliation of high-quality few-layer black phosphorus for a flexible lithium ion battery. Adv. Mater. 2016, 28, 510–517.

    Article  CAS  Google Scholar 

  32. Zhu, Y.; Peng, L. L.; Fang, Z. W.; Yan, C. S.; Zhang, X.; Yu, G. H. Structural engineering of 2D nanomaterials for energy storage and catalysis. Adv. Mater. 2018, 30, 1706347.

    Article  Google Scholar 

  33. Feng, Y.; Li, Y. L.; Hou, F. Boron doped lithium trivanadate as a cathode material for an enhanced rechargeable lithium ion batteries. J. Power Sources 2009, 187, 224–228.

    Article  CAS  Google Scholar 

  34. Li, J. B.; Yan, D.; Hou, S. J.; Li, Y. Q.; Lu, T.; Yao, Y. F.; Pan, L. K. Improved sodium-ion storage performance of Ti3C2Tx MXenes by sulfur doping. J. Mater. Chem. A 2018, 6, 1234–1243.

    Article  CAS  Google Scholar 

  35. Hou, Y.; Chang, K.; Wang, Z. Y.; Gu, S.; Liu, Q.; Zhang, J. J.; Cheng, H.; Zhang, S. L.; Chang, Z. R.; Lu, Z. G. Rapid microwave-assisted refluxing synthesis of hierarchical mulberry-shaped Na3V2(PO4)2O2F@C as high performance cathode for sodium & lithium-ion batteries. Sci. China Mater. 2019, 62, 474–486.

    Article  CAS  Google Scholar 

  36. Gao, S.; Gu, B. C.; Jiao, X. C.; Sun, Y. F.; Zu, X. L.; Yang, F.; Zhu, W. G.; Wang, C. M.; Feng, Z. M.; Ye, B. J. et al. Highly efficient and exceptionally durable CO2 photoreduction to methanol over freestanding defective single-unit-cell bismuth vanadate layers. J. Am. Chem. Soc. 2017, 139, 3438–3445.

    Article  CAS  Google Scholar 

  37. Wu, G.; Chan, K. C.; Zhu, L. L.; Sun, L. G.; Lu, J. Dual-phase nanostructuring as a route to high-strength magnesium alloys. Nature 2017, 545, 80–83.

    Article  CAS  Google Scholar 

  38. Ni, J. F.; Sun, M. L.; Li, L. Highly efficient sodium storage in iron oxide nanotube arrays enabled by built-in electric field. Adv. Mater. 2019, 31, 1902603.

    Article  CAS  Google Scholar 

  39. Xia, T.; Zhang, W.; Murowchick, J.; Liu, G.; Chen, X. B. Built-in electric field-assisted surface-amorphized nanocrystals for high-rate lithium-ion battery. Nano Lett. 2013, 13, 5289–5296.

    Article  CAS  Google Scholar 

  40. Xia, T.; Zhang, W.; Wang, Z. H.; Zhang, Y. L.; Song, X. Y.; Murowchick, J.; Battaglia, V.; Liu, G.; Chen, X. B. Amorphous carbon-coated TiO2 nanocrystals for improved lithium-ion battery and photocatalytic performance. Nano Energy 2014, 6, 109–118.

    Article  CAS  Google Scholar 

  41. Lin, X.; Liu, D.; Guo, X. Y.; Sun, N.; Zhao, S.; Chang, L. M.; Zhai, H. J.; Wang, Q. W. Fabrication and efficient visible light-induced photocatalytic activity of Bi2MoO6/BiPO4 composite. J. Phys. Chem. Solids 2015, 76, 170–177.

    Article  CAS  Google Scholar 

  42. Yang, M. Y.; Shang, C. Q.; Li, F. F.; Liu, C.; Wang, Z. Y.; Gu, S.; Liu, D.; Cao, L. J.; Zhang, J. J.; Lu, Z. G. et al. Synergistic electronic and morphological modulation on ternary Co1−xVxP nanoneedle arrays for hydrogen evolution reaction with large current density. Sci. China Mater. 2021, 64, 880–891.

    Article  CAS  Google Scholar 

  43. Pan, C. S.; Xu, J.; Wang, Y. J.; Li, D.; Zhu, Y. F. Dramatic activity of C3N4/BiPO4 photocatalyst with core/shell structure formed by self-assembly. Adv. Funct. Mater. 2012, 22, 1518–1524.

    Article  CAS  Google Scholar 

  44. Jia, Z.; Lyu, F.; Zhang, L. C.; Zeng, S.; Liang, S. X.; Li, Y. Y.; Lu, J. Pt nanoparticles decorated heterostructured g-C3N4/Bi2MoO6 microplates with highly enhanced photocatalytic activities under visible light. Sci. Rep. 2019, 9, 1–13.

    Article  Google Scholar 

  45. Zhou, Y. G.; Zhang, Y. F.; Lin, M. S.; Long, J. L.; Zhang, Z. Z.; Lin, H. X.; Wu, J. C. S.; Wang, X. X. Monolayered Bi2WO6 nanosheets mimicking heterojunction interface with open surfaces for photocatalysis. Nat. Commun. 2015, 6, 8340.

    Article  Google Scholar 

  46. Zheng, Y.; Zhou, T. F.; Zhao, X. D.; Pang, W. K.; Gao, H.; Li, S. A.; Zhou, Z.; Liu, H. K.; Guo, Z. P. Atomic interface engineering and electric-field effect in ultrathin Bi2MoO6 nanosheets for superior lithium ion storage. Adv. Mater. 2017, 29, 1700396.

    Article  Google Scholar 

  47. Zhang, S. L.; Zheng, Y.; Huang, X. J.; Hong, J.; Cao, B.; Hao, J. N.; Fan, Q. N.; Zhou, T. F.; Guo, Z. P. Structural engineering of hierarchical micro-nanostructured Ge—C framework by controlling the nucleation for ultralong-life Li storage. Adv. Energy Mater. 2019, 9, 1900081.

    Article  Google Scholar 

  48. Jia, Z.; Wang, Q.; Sun, L. G.; Wang, Q.; Zhang, L. C.; Wu, G.; Luan, J. H.; Jiao, Z. B.; Wang, A. D.; Liang, S. X. et al. Attractive in situ self-reconstructed hierarchical gradient structure of metallic glass for high efficiency and remarkable stability in catalytic performance. Adv. Funct. Mater. 2019, 29, 1807857.

    Article  Google Scholar 

  49. Zhang, P.; Wang, D.; Zhu, Q.; Sun, N.; Fu, F.; Xu, B. et al. Plate-to-layer Bi2MoO6/MXene-heterostructured anode for lithium-ion batteries. Adv. Mater. 2019, 11(1), 1–14.

    Google Scholar 

  50. Li, Y. L.; Trujillo, M. A.; Fu, E. G.; Patterson, B.; Fei, L.; Xu, Y.; Deng, S. G.; Smirnov, S.; Luo, H. M. Bismuth oxide: A new lithium-ion battery anode. J. Mater. Chem. A 2013, 1, 12123–12127.

    Article  CAS  Google Scholar 

  51. Yuan, S.; Zhao, Y.; Chen, W. B.; Wu, C.; Wang, X. Y.; Zhang, L. N.; Wang, Q. Self-assembled 3D hierarchical porous Bi2MoO6 microspheres towards high capacity and ultralong-life anode material for Li-ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 26, 21781–21790.

    Article  Google Scholar 

  52. Wang, Z. H.; Zhang, Y. L.; Xia, T.; Murowchick, J.; Liu, G.; Chen, X. B. Lithium-ion battery performance of (001)-faceted TiO2 nanosheets vs. spherical TiO2 nanoparticles. Energy Technol. 2014, 2, 376–382.

    Article  CAS  Google Scholar 

  53. Guan, L.; Chen, X. B. Photoexcited charge transport and accumulation in anatase TiO2. ACS Appl. Energy Mater. 2018, 1, 4313–4320.

    Article  CAS  Google Scholar 

  54. Augustyn, V.; Come, J.; Lowe, M. A.; Kim, J. W.; Taberna, P. L.; Tolbert, S. H.; Abruña, H. D.; Simon, P.; Dunn, B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 2013, 12, 518.

    Article  CAS  Google Scholar 

  55. Li, Z. H.; Gan, Q. M.; Zhang, Y. F.; Hu, J.; Liu, P.; Xu, C. H.; Wu, X. B.; Ge, Y. L.; Wang, F.; Yao, Q. R. et al. FeSb@N-doped carbon quantum dots anchored in 3D porous N-doped carbon with pseudocapacitance effect enabling fast and ultrastable potassium storage. Nano Res. 2022, 15, 217–224.

    Article  CAS  Google Scholar 

  56. Wang, H. E.; Zhao, X.; Yin, K. L.; Li, Y.; Chen, L. H.; Yang, X. Y.; Zhang, W. J.; Su, B. L.; Cao, G. Z. Superior pseudocapacitive lithium-ion storage in porous vanadium oxides@C heterostructure composite. ACS Appl. Mater. Interfaces 2017, 9, 43665–43673.

    Article  CAS  Google Scholar 

  57. Sottmann, J.; Herrmann, M.; Vajeeston, P.; Ruud, A.; Drathen, C.; Emerich, H.; Wragg, D. S.; Fjellvåg, H. Bismuth vanadate and molybdate: Stable alloying anodes for sodium-ion batteries. Chem. Mater. 2017, 29, 2803–2810.

    Article  CAS  Google Scholar 

  58. Zhao, Y. B.; Manthiram, A. High-capacity, high-rate Bi—Sb alloy anodes for lithium-ion and sodium-ion batteries. Chem. Mater. 2015, 27, 3096–3101.

    Article  CAS  Google Scholar 

  59. Zhao, X.; Zhao, Y. D.; Liu, Z. H.; Yang, Y.; Sui, J. H.; Wang, H. E.; Cai, W.; Cao, G. Z. Synergistic coupling of lamellar MoSe2 and SnO2 nanoparticles via chemical bonding at interface for stable and high-power sodium-ion capacitors. Chem. Eng. J. 2018, 354, 1164–1173.

    Article  CAS  Google Scholar 

  60. Huang, B.; Liu, S.; Zhao, X.; Li, Y. W.; Yang, J. W.; Chen, Q. Q.; Xiao, S. H.; Zhang, W. H.; Wang, H. E.; Cao, G. Z. Enhancing sodium-ion storage performance of MoO2/N-doped carbon through interfacial Mo—N—C bond. Sci. China Mater. 2021, 64, 85–95.

    Article  CAS  Google Scholar 

  61. He, M.; Wang, Z. H.; Yan, X. D.; Tian, L. H.; Liu, G.; Chen, X. B. Hydrogenation effects on the lithium ion battery performance of TiOF2. J. Power Sources 2016, 306, 309–316.

    Article  CAS  Google Scholar 

  62. Shi, Y. L.; Sun, S. B.; Liu, J. J.; Cui, Y. L.; Zhuang, Q. C.; Chen, X. B. Enhanced charge storage of Li3FeF6 with carbon nanotubes for lithium-ion batteries. RSC Adv. 2016, 6, 113283–113288.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone Shenzhen Park Project: HZQB-KCZYB-2020030, the National Key R&D Program of China (Project No. 2017YFA0204403), Hong Kong Innovation and Technology Commission via the Hong Kong Branch of National Precious Metals Material Engineering Research Center.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Yang Li or Jian Lu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyu, F., Jia, Z., Zeng, S. et al. Tunable ultrathin dual-phase P-doped Bi2MoO6 nanosheets for advanced lithium and sodium storage. Nano Res. 15, 6128–6137 (2022). https://doi.org/10.1007/s12274-022-4198-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4198-5

Keywords

Navigation