Skip to main content
Log in

Mechanically durable, super-repellent 3D printed microcell/nanoparticle surfaces

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Three-dimensional (3D) printed re-entrant micropillars have demonstrated high static contact angles for an unprecedented variety of liquids, but have yet to achieve this with low contact angle hysteresis and excellent abrasion resistance. We report on the demonstration of 3D printed microcell/nanoparticle structures that exhibit high static contact angle, low contact angle hysteresis, and high mechanical durability. Micropillars and microcells both exhibit high static contact angles with water and ethylene glycol (EG), but suffer from high contact angle hysteresis, indicative of rose petal wetting. Our modeling results indicate that micropillars are able to achieve higher static contact angle and breakthrough pressure simultaneously compared with microcells. However, simulations also indicate that micropillars have higher maximum equivalent stress at their bases, so that they are more prone to mechanical failure. We address contact angle hysteresis and mechanical durability issues by the creation of 3D printed microcell/nanoparticle arrays that demonstrate super-repellency and retain their super-repellency after 100 cycles of mechanical abrasion with a Scotch-Brite abrasive pad under a pressure of 1.2 kPa. The use of interconnected microcell structures as opposed to micropillars addresses mechanical durability issues. Low contact angle hysteresis is realized by coating 3D printed structures with low surface energy nanoparticles, which lowers the solid—liquid contact area fraction. Our results demonstrate new 3D printed structures with mechanical durability and super-repellency through the use of microcell structures integrated with fluorinated nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Haghanifar, S.; Lu, P.; Kayes, M. I.; Tan, S. S.; Kim, K. J.; Gao, T.; Ohodnicki, P.; Leu, P. W. Self-cleaning, high transmission, near unity haze OTS/silica nanostructured glass. J. Mater. Chem. C. 2018, 6, 9191–9199.

    Article  CAS  Google Scholar 

  2. Nanda, D.; Varshney, P.; Satapathy, M.; Mohapatra, S. S.; Kumar, A. Self-assembled monolayer of functionalized silica microparticles for self-cleaning applications. Colloids Surf. Physicochem. Eng. Asp. 2017, 529, 231–238.

    Article  CAS  Google Scholar 

  3. Mahadik, S. A.; Kavale, M. S.; Mukherjee, S. K.; Rao, A. V. Transparent superhydrophobic silica coatings on glass by sol-gel method. Appl. Surf. Sci. 2010, 257, 333–339.

    Article  CAS  Google Scholar 

  4. Haghanifar, S.; McCourt, M.; Cheng, B. L.; Wuenschell, J.; Ohodnicki, P.; Leu, P. W. Creating glasswing butterfly-inspired durable antifogging superomniphobic supertransmissive, superclear nanostructured glass through Bayesian learning and optimization. Mater. Horiz. 2019, 6, 1632–1642.

    Article  CAS  Google Scholar 

  5. Wilke, K. L.; Preston, D. J.; Lu, Z. M.; Wang, E. N. Toward condensation-resistant omniphobic surfaces. ACS Nano 2018, 12, 11013–11021.

    Article  CAS  Google Scholar 

  6. Mouterde, T.; Lehoucq, G.; Xavier, S.; Checco, A.; Black, C. T.; Rahman, A.; Midavaine, T.; Clanet, C.; Quéré, D. Antifogging abilities of model nanotextures. Nat. Mater. 2017, 16, 658–663.

    Article  CAS  Google Scholar 

  7. Haghanifar, S.; Tomasovic, L. M.; Galante, A. J.; Pekker, D.; Leu, P. W. Stain-resistant, superomniphobic flexible optical plastics based on nano-enoki mushrooms. J. Mater. Chem. A 2019, 7, 15698–15706.

    Article  CAS  Google Scholar 

  8. Wang, N.; Xiong, D. S.; Pan, S.; Wang, K.; Shi, Y.; Deng, Y. L. Robust superhydrophobic coating and the anti-icing properties of its lubricants-infused-composite surface under condensing condition. New J. Chem. 2017, 41, 1846–1853.

    Article  CAS  Google Scholar 

  9. Meuler, A. J.; McKinley, G. H.; Cohen, R. E. Exploiting topographical texture to impart icephobicity. ACS Nano 2010, 4, 7048–7052.

    Article  CAS  Google Scholar 

  10. Kayes, M. I.; Galante, A. J.; Stella, N. A.; Haghanifar, S.; Shanks, R. M. Q.; Leu, P. W. Stable lotus leaf-inspired hierarchical, fluorinated polypropylene surfaces for reduced bacterial adhesion. React. Funct. Polym. 2018, 128, 40–46.

    Article  CAS  Google Scholar 

  11. Galante, A. J.; Haghanifar, S.; Romanowski, E. G.; Shanks, R. M. Q.; Leu, P. W. Superhemophobic and antivirofouling coating for mechanically durable and wash-stable medical textiles. ACS Appl. Mater. Interfaces 2020, 12, 22120–22128.

    Article  CAS  Google Scholar 

  12. Haghanifar, S.; Galante, A. J.; Leu, P. W. Challenges and prospects of bio-inspired and multifunctional transparent substrates and barrier layers for optoelectronics. ACS Nano 2020, 14, 16241–16265.

    Article  CAS  Google Scholar 

  13. Ragesh, P.; Ganesh, V. A.; Nair, S. V.; Nair, A. S. A review on ‘self-cleaning and multifunctional materials’. J. Mater. Chem. A 2014, 2, 14773–14797.

    Article  CAS  Google Scholar 

  14. Pan, S. J.; Kota, A. K.; Mabry, J. M.; Tuteja, A. Superomniphobic surfaces for effective chemical shielding. J. Am. Chem. Soc. 2013, 135, 578–581.

    Article  CAS  Google Scholar 

  15. Choi, W.; Tuteja, A.; Chhatre, S.; Mabry, J. M.; Cohen, R. E.; McKinley, G. H. Fabrics with tunable oleophobicity. Adv. Mater. 2009, 21, 2190–2195.

    Article  CAS  Google Scholar 

  16. Ahuja, A.; Taylor, J. A.; Lifton, V.; Sidorenko, A. A.; Salamon, T. R.; Lobaton, E. J.; Kolodner, P.; Krupenkin, T. N. Nanonails: A simple geometrical approach to electrically tunable superlyophobic surfaces. Langmuir 2008, 24, 9–14.

    Article  CAS  Google Scholar 

  17. Kota, A. K.; Li, Y. X.; Mabry, J. M.; Tuteja, A. Hierarchically structured superoleophobic surfaces with ultralow contact angle hysteresis. Adv. Mater. 2012, 24, 5838–5843.

    Article  CAS  Google Scholar 

  18. Tuteja, A.; Choi, W.; Ma, M. L.; Mabry, J. M.; Mazzella, S. A.; Rutledge, G. C.; McKinley, G. H.; Cohen, R. E. Designing superoleophobic surfaces. Science 2007, 318, 1618–1622.

    Article  CAS  Google Scholar 

  19. Cassie, A. B. D.; Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 1944, 40, 546–551.

    Article  CAS  Google Scholar 

  20. Marmur, A. From hygrophilic to superhygrophobic: Theoretical conditions for making high-contact-angle surfaces from low-contact-angle materials. Langmuir 2008, 24, 7573–7579.

    Article  CAS  Google Scholar 

  21. Chu, Z. L.; Seeger, S. Superamphiphobic surfaces. Chem. Soc. Rev. 2014, 43, 2784–2798.

    Article  CAS  Google Scholar 

  22. Sahoo, B.; Yoon, K.; Seo, J.; Lee, T. Chemical and physical pathways for fabricating flexible superamphiphobic surfaces with high transparency. Coatings 2018, 8, 47.

    Article  CAS  Google Scholar 

  23. Im, Y.; Joshi, Y.; Dietz, C.; Lee, S. S. Enhanced boiling of a dielectric liquid on copper nanowire surfaces. Int. J. Micro-Nano Scale Transp. 2010, 1, 79–96.

    Article  CAS  Google Scholar 

  24. Choi, J.; Jo, W.; Lee, S. Y.; Jung, Y. S.; Kim, S. H.; Kim, H. T. Flexible and robust superomniphobic surfaces created by localized photofluidization of azopolymer pillars. ACS Nano 2017, 11, 7821–7828.

    Article  CAS  Google Scholar 

  25. Liu, X. J.; Gu, H. C.; Wang, M.; Du, X.; Gao, B. B.; Elbaz, A.; Sun, L. D.; Liao, J. L.; Xiao, P. F.; Gu, Z. Z. 3D printing of bioinspired liquid superrepellent structures. Adv. Mater. 2018, 30, 1800103.

    Article  CAS  Google Scholar 

  26. Yang, Y.; Li, X. J.; Zheng, X.; Chen, Z. Y.; Zhou, Q. F.; Chen, Y. 3D-printed biomimetic super-hydrophobic structure for microdroplet manipulation and oil/water separation. Adv. Mater. 2018, 30, 1704912.

    Article  CAS  Google Scholar 

  27. Hu, S. T.; Cao, X. B.; Reddyhoff, T.; Puhan, D.; Vladescu, S. C.; Wang, Q.; Shi, X.; Peng, Z. K.; deMello, A. J.; Dini, D. Self-compensating liquid repellent surfaces with stratified morphology. ACS Appl Mater Interfaces 2020, 12, 4147–4182.

    Google Scholar 

  28. Liu, X. J.; Gu, H. C.; Ding, H. B.; Du, X.; He, Z. Z.; Sun, L. D.; Liao, J. L.; Xiao, P. F.; Gu, Z. Z. Programmable liquid adhesion on bio-inspired re-entrant structures. Small 2019, 15, e1902360.

    Article  CAS  Google Scholar 

  29. Mooraj, S.; Qi, Z.; Zhu, C.; Ren, J.; Peng, S. Y.; Liu, L.; Zhang, S. B.; Feng, S.; Kong, F. Y.; Liu, Y. F. et al. 3D printing of metal-based materials for renewable energy applications. Nano Res. 2021, 14, 2105–2132.

    Article  CAS  Google Scholar 

  30. Yoo, J. I.; Kim, S. H.; Ko, H. C. Stick-and-play system based on interfacial adhesion control enhanced by micro/nanostructures. Nano Res. 2021, 14, 3143–3158.

    Article  CAS  Google Scholar 

  31. Feng, L.; Zhang, Y.; Xi, J.; Zhu, Y.; Wang, N.; Xia, F.; Jiang, L. Petal effect: A superhydrophobic state with high adhesive force. Langmuir 2008, 24, 4114–4119.

    Article  CAS  Google Scholar 

  32. Chakraborty, M.; Weibel, J. A.; Schaber, J. A.; Garimella, S. V. The wetting state of water on a rose petal. Adv. Mater. Interfaces 2019, 6, 1900652.

    Article  Google Scholar 

  33. Zhou, Z. Y.; Gao, T. C.; McCarthy, S.; Kozbial, A.; Tan, S. S.; Pekker, D.; Li, L.; Leu, P. W. Parahydrophobicity and stick-slip wetting dynamics of vertically aligned carbon nanotube forests. Carbon 2019, 152, 474–481.

    Article  CAS  Google Scholar 

  34. Szczepanski, C. R.; Guittard, F.; Darmanin, T. Recent advances in the study and design of parahydrophobic surfaces: From natural examples to synthetic approaches. Adv. Colloid Interface Sci. 2017, 241, 37–61.

    Article  CAS  Google Scholar 

  35. Darmanin, T.; Guittard, F. Superhydrophobic and superoleophobic properties in nature. Mater. Today 2015, 18, 273–285.

    Article  CAS  Google Scholar 

  36. Barthlott, W.; Neinhuis, C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 1997, 202, 1–8.

    Article  CAS  Google Scholar 

  37. Milionis, A.; Loth, E.; Bayer, I. S. Recent advances in the mechanical durability of superhydrophobic materials. Adv. Colloid Interface Sci. 2016, 229, 57–79.

    Article  CAS  Google Scholar 

  38. Tian, X. L.; Verho, T.; Ras, R. H. A. Moving superhydrophobic surfaces toward real-world applications. Science 2016, 352, 142–143.

    Article  CAS  Google Scholar 

  39. Wang, D. H.; Sun, Q. Q.; Hokkanen, M. J.; Zhang, C. L.; Lin, F. Y.; Liu, Q.; Zhu, S. P.; Zhou, T. F.; Chang, Q.; He, B. et al. Design of robust superhydrophobic surfaces. Nature 2020, 582, 55–59.

    Article  CAS  Google Scholar 

  40. Zhao, R.; Chen, Y.; Liu, G. Z.; Jiang, Y. C.; Chen, K. L. Fabrication of self-healing waterbased superhydrophobic coatings from POSS modified silica nanoparticles. Mater. Lett. 2018, 229, 281–285.

    Article  CAS  Google Scholar 

  41. Wang, H. X.; Fang, J.; Cheng, T.; Ding, J.; Qu, L. T.; Dai, L. M.; Wang, X. G.; Lin, T. One-step coating of fluoro-containing silica nanoparticles for universal generation of surface superhydrophobicity. Chem. Commun. 2008, 7, 877–879.

    Article  Google Scholar 

  42. Brakke, K. A. The surface evolver. Exp. Math. 1992, 1, 141–165.

    Article  Google Scholar 

  43. Frenzel, T.; Kadic, M.; Wegener, M. Three-dimensional mechanical metamaterials with a twist. Science 2017, 358, 1072–1074.

    Article  CAS  Google Scholar 

  44. 3M United States. Scotch-BriteTM Aircraft Cleaning Pad[EB/OL]. https://www.3m.com/3M/en_US/p/d/b40066280/ (Accessed Dec 12, 2021).

  45. Leo, T. L.; Kim, C. J. C. J. Turning a surface superrepellent even to completely wetting liquids. Science 2014, 346, 1096–1100.

    Article  CAS  Google Scholar 

  46. Haghanifar, S.; McCourt, M.; Cheng, B. L.; Wuenschell, J.; Ohodnicki, P.; Leu, P. W.; Leu P. W.; Leu P. W. Discovering highperformance broadband and broad angle antireflection surfaces by machine learning. Optica 2020, 7, 784–789.

    Article  CAS  Google Scholar 

  47. Haghanifar, S.; Rodriguez De Vecchis, R. T.; Kim, K. J.; Wuenschell, J.; Sharma, S. P.; Lu, P.; Ohodnicki, P.; Leu, P. W. Flexible nanograss with highest combination of transparency and haze for optoelectronic plastic substrates. Nanotechnology 2018, 29, 42LT01.

    Article  CAS  Google Scholar 

  48. Haghanifar, S.; Gao, T. C.; Vecchis, R. T. R. D.; Pafchek, B.; Jacobs, T. D. B.; Leu, P. W. Ultrahigh-transparency, ultrahigh-haze nanograss glass with fluid-induced switchable haze. Optica 2017, 4, 1522–1525.

    Article  CAS  Google Scholar 

  49. Peng, K. Q.; Wang, X.; Li, L.; Wu, X. L.; Lee, S. T. Highperformance silicon nanohole solar cells. J. Am. Chem. Soc. 2010, 132, 6872–6873.

    Article  CAS  Google Scholar 

  50. Panter, J. R.; Gizaw, Y.; Kusumaatmaja, H. Multifaceted design optimization for superomniphobic surfaces. Sci. Adv. 2019, 5, eaav7328.

    Article  CAS  Google Scholar 

  51. Wang, B. M.; Gao, T. C.; Zhou, Z. Y.; Pafchek, B.; Leu, P. W. Frontside scattering structures for enhanced performance in flexible ultrathin crystalline silicon solar cells. J. Photon. Energy 2018, 8, 030501.

    Google Scholar 

  52. Gao, T. C.; Haghanifar, S.; Lindsay, M. G.; Lu, P.; Kayes, M. I.; Pafchek, B. D.; Zhou, Z. Y.; Ohodnicki, P. R.; Leu, P. W. Fundamental performance limits and haze evaluation of metal nanomesh transparent conductors. Adv. Opt. Mater. 2018, 6, 1700829.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported in part by the National Science Foundation (No. ECCS 1552712).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul W. Leu.

Additional information

Notes

The authors declare no competing financial interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haghanifar, S., Galante, A.J., Zarei, M. et al. Mechanically durable, super-repellent 3D printed microcell/nanoparticle surfaces. Nano Res. 15, 5678–5686 (2022). https://doi.org/10.1007/s12274-022-4139-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4139-3

Keywords

Navigation