Skip to main content
Log in

Highly efficient metal-free catalyst from cellulose for hydrogen peroxide photoproduction instructed by machine learning and transient photovoltage technology

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Great attention has been paid to green procedures and technologies for the design of environmental catalytic systems. Biomass-derived catalysts represent one of the greener alternatives for green catalysis. Photocatalytic production of hydrogen peroxide (H2O2) from O2 and H2O is an ideal green way and has attracted widespread attention. Here, we show a metal-free photocatalyst from cellulose, which has a high photocatalytic activity for the photoproduction of H2O2 with the reaction rate up to 2,093 µmol/(h·g) and the apparent quantum efficiency of 2.33%. Importantly, a machine learning model was constructed to guide the synthesis of this metal-free photocatalyst. With the help of transient photovoltage (TPV) tests, we optimized their fabrication and catalytic activity, and clearly showed that the formation of carbon dots (CDs) facilitates the generation, separation, and transfer of photo-induced charges on the catalyst surface. This work provides a green way for the highly efficient metal-free photocatalyst design and study from biomass materials with the machine learning and TPV technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Melchionna, M.; Fornasiero, P.; Prato, M. The rise of hydrogen peroxide as the main product by metal-free catalysis in oxygen reductions, Adv. Mater. 2019, 31, e1802920.

    Article  Google Scholar 

  2. Xia, C.; Xia, Y.; Zhu, P.; Fan, L.; Wang, H. T. Direct electrosynthesis of pure aqueous H2O2 solutions up to 20% by weight using a solid electrolyte, Science 2019, 366, 226–231.

    Article  CAS  Google Scholar 

  3. Huo, X. Q.; Yang, Y.; Niu, Q. Y.; Zhu, Y.; Zeng, G. M.; Lai, C.; Yi, H.; Li, M. F.; An, Z. W.; Huang, D. L. et al. A direct Z-scheme oxygen vacant BWO/oxygen-enriched graphitic carbon nitride polymer heterojunction with enhanced photocatalytic activity, Chem. Eng. J. 2021, 403, 126363.

    Article  CAS  Google Scholar 

  4. Fellinger, T. P.; Hasché, F.; Strasser, P.; Antonietti, M. Mesoporous nitrogen-doped carbon for the electrocatalytic synthesis of hydrogen peroxide, J. Am. Chem. Soc. 2012, 134, 4072–4075.

    Article  CAS  Google Scholar 

  5. Freakley, S. J.; He, Q.; Harrhy, J. H.; Lu, L.; Crole, D. A.; Morgan, D. J.; Ntainjua, E. N.; Edwards, J. K.; Carley, A. F.; Borisevich, A. Y. et al. Palladium-tin catalysts for the direct synthesis of H2O2 with high selectivity, Science 2016, 351, 965–968.

    Article  CAS  Google Scholar 

  6. Suk, M.; Chung, M. W.; Han, M. H.; Oh, H. S.; Choi, C. H. Selective H2O2 production on surface-oxidized metal-nitrogen-carbon electrocatalysts, Catal. Today 2021, 359, 99–105.

    Article  CAS  Google Scholar 

  7. Jiang, K.; Zhao, J. J.; Wang, H. T. Catalyst design for electrochemical oxygen reduction toward hydrogen peroxide, Adv. Funct. Mater. 2020, 30, 2003321.

    Article  CAS  Google Scholar 

  8. Ding, Z. Y.; Chen, L. P.; Wang, D. D.; Zhou, H.; Zhou, L.; Zhu, X.; Jiang, L.; Feng, X. J. Oxygen-tolerant hydrogen peroxide reduction catalysts for reliable noninvasive bioassays, Small 2019, 15, 1903320.

    Article  Google Scholar 

  9. Shiraishi, Y.; Kanazawa, S.; Kofuji, Y.; Sakamoto, H.; Ichikawa, S.; Tanaka, S.; Hirai T. Sunlight-driven hydrogen peroxide production from water and molecular oxygen by metal-free photocatalysts, Angew. Chem., Int. Ed. 2014, 53, 13454–13459.

    Article  CAS  Google Scholar 

  10. Feng, L. W.; Li, B. D.; Xiao, Y. Q.; Li, L. J.; Zhang, Y. Q.; Zhao, Q. N.; Zuo, G. F.; Meng, X. G.; Roy, V. A. L. Au modified Bi2O3-TiO2 hybrid for photocatalytic synthesis of hydrogen peroxide, Catal. Commun. 2021, 155, 106315.

    Article  CAS  Google Scholar 

  11. Liu, J. L.; Zou, Y. S.; Jin, B. J.; Zhang, K.; Park, J. H. Hydrogen peroxide production from solar water oxidation, ACS Energy Lett. 2019, 4, 3018–3027.

    Article  CAS  Google Scholar 

  12. Limpachanangkul, P.; Liu, L. C.; Hunsom, M.; Chalermsinsuwan, B. Low energy photocatalytic glycerol conversion to high valuable products via Bi2O3 polymorphs in the presence of H2O2, Energy Rep. 2020, 6, 95–101.

    Article  Google Scholar 

  13. Zuo, G. F.; Zhang, Y. Q.; Liu, S. S.; Guo, Z. L.; Zhao, Q. N.; Saianand, G.; Feng, L. W.; Li, L. J.; Li, W. Z.; Zhang, N. et al. Aβ-cyclodextrin modified graphitic carbon nitride with Au Co-catalyst for efficient photocatalytic hydrogen peroxide production, Nanomaterials 2020, 10, 1969.

    Article  CAS  Google Scholar 

  14. Liu, Y.; Zhao, Y. J.; Sun, Y.; Cao, J. J.; Wang, H.; Wang, X.; Huang, H.; Shao, M. W.; Liu, Y.; Kang, Z. H. A 4e-2e cascaded pathway for highly efficient production of H2 and H2O2 from water photosplitting at normal pressure, Appl. Catal. B:Environ. 2020, 270, 118875.

    Article  CAS  Google Scholar 

  15. Jiang, K.; Back, S.; Akey, A. J.; Xia, C.; Hu, Y. F.; Liang, W. T.; Schaak, D.; Stavitski, E.; Nørskov, J. K.; Siahrostami, S. et al. Highly selective oxygen reduction to hydrogen peroxide on transition metal single atom coordination, Nat. Commun. 2019, 10, 3997.

    Article  Google Scholar 

  16. Gao, J. J.; Yang, H. B.; Huang, X.; Hung, S. F.; Cai, W. Z.; Jia, C. M.; Miao, S.; Chen, H. M.; Yang, X. F.; Huang, Y. Q. et al. Enabling direct H2O2 production in acidic media through rational design of transition metal single atom catalyst, Chem 2020, 6, 658–674.

    Article  CAS  Google Scholar 

  17. Liang, X. C.; Fu, Y.; Chang, J. Sustainable production of methyl levulinate from biomass in ionic liquid-methanol system with biomass-based catalyst, Fuel 2020, 259, 116246.

    Article  CAS  Google Scholar 

  18. Hamza, M.; Ayoub, M.; Shamsuddin, R. B.; Mukhtar, A.; Saqib, S.; Zahid, I.; Ameen, M.; Ullah, S.; Al-Sehemi, A. G.; Ibrahim, M. A review on the waste biomass derived catalysts for biodiesel production, Environ. Technol. Innov. 2021, 21, 101200.

    Article  CAS  Google Scholar 

  19. Mateo, D.; García-Mulero, A.; Albero, J.; García, H. N-doped defective graphene decorated by strontium titanate as efficient photocatalyst for overall water splitting, Appl. Catal. B:Environ. 2019, 252, 111–119.

    Article  CAS  Google Scholar 

  20. Liang, H. W.; Wu, Z. Y.; Chen, L. F.; Li, C.; Yu, S. H. Bacterial cellulose derived nitrogen-doped carbon nanofiber aerogel: An efficient metal-free oxygen reduction electrocatalyst for zinc-air battery, Nano Energy 2015, 11, 366–376.

    Article  CAS  Google Scholar 

  21. Xie, X. Y.; Li, S.; Qi, K. M.; Wang, Z. W. Photoinduced synthesis of green photocatalyst Fe3O4/BiOBr/CQDs derived from corncob biomass for carbamazepine degradation: The role of selectively more CQDs decoration and Z-scheme structure, Chem. Eng. J. 2021, 420, 129705.

    Article  CAS  Google Scholar 

  22. Yao, X.; Ma, C. C.; Huang, H.; Zhu, Z.; Dong, H. J.; Li, C. X.; Zhang, W. L.; Yan, Y. S.; Liu, Y. Solvothermal-assisted synthesis of biomass carbon quantum dots/bismuth oxyiodide microflower for enhanced photocatalytic activity, Nano 2018, 13, 1850031.

    Article  CAS  Google Scholar 

  23. Liu, W. G.; Chen, Y. J.; Qi, H. F.; Zhang, L. L.; Yan, W. S.; Liu, X. Y.; Yang, X. F.; Miao, S.; Wang, W. T.; Liu, C. G. et al. A durable nickel single-atom catalyst for hydrogenation reactions and cellulose valorization under harsh conditions, Angew. Chem., Int. Ed. 2018, 57, 7071–7075.

    Article  CAS  Google Scholar 

  24. Zhu, Z.; Ma, C. C.; Yu, K. S.; Lu, Z. Y.; Liu, Z.; Huo, P. W.; Xu, T.; Yan, Y. S. Synthesis Ce-doped biomass carbon-based g-C3N4 via plant growing guide and temperature-programmed technique for degrading 2-mercaptobenzothiazole, Appl. Catal. B:Environ. 2020, 268, 118432.

    Article  CAS  Google Scholar 

  25. Ma, W.; Wang, N.; Lu, Y.; Lu, Z. Y.; Tang, X.; Li, S. T. Synthesis of magnetic biomass carbon-based Bi2O3 photocatalyst and mechanism insight by a facile microwave and deposition method, New J. Chem. 2019, 43, 2888–2898.

    Article  CAS  Google Scholar 

  26. Zhao, C.; Ran, F. L.; Dai, L.; Li, C. Y.; Zheng, C. Y.; Si, C. L. Cellulose-assisted construction of high surface area Z-scheme C-doped g-C3N4/WO3 for improved tetracycline degradation, Carbohydr. Polym. 2021, 255, 117343.

    Article  CAS  Google Scholar 

  27. Wei, J.; Liang, Y.; Hu, Y. X.; Kong, B.; Simon, G. P.; Zhang, J.; Jiang, S. P.; Wang, H. T. A versatile iron-tannin-framework ink coating strategy to fabricate biomass-derived iron carbide/Fe-N-carbon catalysts for efficient oxygen reduction. Angew. Chem., Int. Ed. 2016, 55, 1355–1359.

    Article  CAS  Google Scholar 

  28. Zhu, M. M.; Zhou, Y. J.; Sun, Y.; Zhu, C.; Hu, L. L.; Gao, J.; Huang, H.; Liu, Y.; Kang, Z. H. Cobalt phosphide/carbon dots composite as an efficient electrocatalyst for oxygen evolution reaction, Dalton Trans. 2018, 47, 5459–5464.

    Article  CAS  Google Scholar 

  29. Guo, S. J.; Zhao, S. Q.; Wu, X. Q.; Li, H.; Zhou, Y. J.; Zhu, C.; Yang, N. J.; Jiang, X.; Gao, J.; Bai, L. et al. A Co3O4-CDots-C3N4 three component electrocatalyst design concept for efficient and tunable CO2 reduction to syngas, Nat. Commun. 2017, 8, 1828.

    Article  Google Scholar 

  30. Zhu, C.; Liu, C. A.; Fu, Y. J.; Gao, J.; Huang, H.; Liu, Y.; Kang, Z. H. Construction of CDs/CdS photocatalysts for stable and efficient hydrogen production in water and seawater, Appl. Catal. B:Environ. 2019, 242, 178–185.

    Article  CAS  Google Scholar 

  31. Jamila, G. S.; Sajjad, S.; Leghari, S. A. K.; Long, M. C. Nitrogen doped carbon quantum dots and GO modified WO3 nanosheets combination as an effective visible photo catalyst, J. Hazard. Mater. 2020, 382, 121087.

    Article  CAS  Google Scholar 

  32. Kütahya, C.; Wang, P.; Li, S. J.; Liu, S. X.; Li, J.; Chen, Z. J.; Strehmel, B. Carbon dots as promising green photocatalyst for free radical and ATRP-based radical photopolymerization with blue LEDs, Angew. Chem., Int. Ed. 2020, 59, 3166–3171.

    Article  Google Scholar 

  33. Li, Y.; Zhao, Y. J.; Nie, H. D.; Wei, K. Q.; Cao, J. J.; Huang, H.; Shao, M. W.; Liu, Y.; Kang, Z. H. Interface photo-charge kinetics regulation by carbon dots for efficient hydrogen peroxide production, J. Mater. Chem. A 2021, 9, 515–522.

    Article  CAS  Google Scholar 

  34. Liu, Y.; Zhao, Y. J.; Wu, Q. Y.; Wang, X.; Nie, H. D.; Zhou, Y. J.; Huang, H.; Shao, M. W.; Liu, Y.; Kang, Z. H. Charge storage of carbon dot enhances photo-production of H2 and H2O2 over Ni2P/carbon dot catalyst under normal pressure, Chem. Eng. J. 2021, 409, 128184.

    Article  CAS  Google Scholar 

  35. Wu, Q. Y.; Cao, J. J.; Wang, X.; Liu, Y.; Zhao, Y. J.; Wang, H.; Liu, Y.; Huang, H.; Liao, F.; Shao, M. W. et al. A metal-free photocatalyst for highly efficient hydrogen peroxide photoproduction in real seawater, Nat. Commun. 2021, 12, 483.

    Article  CAS  Google Scholar 

  36. Ohyama, J.; Kinoshita, T.; Funada, E.; Yoshida, H.; Machida, M.; Nishimura, S.; Uno, T.; Fujima, J.; Miyazato, I.; Takahashi, L. et al. Direct design of active catalysts for low temperature oxidative coupling of methane via machine learning and data mining, Catal. Sci. Technol. 2021, 11, 524–530.

    Article  CAS  Google Scholar 

  37. Takahashi, K.; Miyazato, I.; Nishimura, S.; Ohyama, J. Unveiling hidden catalysts for the oxidative coupling of methane based on combining machine learning with literature data, ChemCatChem. 2018, 10, 3135.

    Article  CAS  Google Scholar 

  38. Sun, M. Z.; Dougherty, A. W.; Huang, B.; Li, Y. L.; Yan, C. H. Accelerating atomic catalyst discovery by theoretical calculations-machine learning strategy, Adv. Energy Mater. 2020, 10, 1903949.

    Article  CAS  Google Scholar 

  39. Artrith, N.; Lin, Z. X.; Chen, J. G. Predicting the activity and selectivity of bimetallic metal catalysts for ethanol reforming using machine learning, ACS Catal. 2020, 10, 9438–9444.

    Article  CAS  Google Scholar 

  40. Zahrt, A. F.; Henle, J. J.; Rose, B. T.; Wang, Y.; Darrow, W. T.; Denmark, S. E. Prediction of higher-selectivity catalysts by computer-driven workflow and machine learning, Science 2019, 363, eaau5631.

    Article  CAS  Google Scholar 

  41. Gu, X. Q.; Chen, Z. M.; Li, Y.; Wu, J.; Wang, X.; Huang, H.; Liu, Y.; Dong, B.; Shao, M. W.; Kang, Z. H. Polyaniline/carbon dots composite as a highly efficient metal-free dual-functional photoassisted electrocatalyst for overall water splitting. ACS Appl. Mater. Interfaces 2021, 13, 24814–24823.

    Article  CAS  Google Scholar 

  42. Zhao, Y. J.; Liu, Y.; Wang, Z. Z.; Ma, Y. R.; Zhou, Y. J.; Shi, X. F.; Wu, Q. Y.; Wang, X.; Shao, M. W.; Huang, H. et al. Carbon nitride assisted 2D conductive metal-organic frameworks composite photocatalyst for efficient visible light-driven H2O2 production, Appl. Catal. B:Environ. 2021, 289, 120035.

    Article  CAS  Google Scholar 

  43. Jiang, W. S.; Zhao, Y. J.; Zong, X. P.; Nie, H. D.; Niu, L. J.; An, L.; Qu, D.; Wang, X. Y.; Kang, Z. H.; Sun, Z. C. Photocatalyst for high-performance H2 production: Ga-doped polymeric carbon nitride, Angew. Chem., Int. Ed. 2021, 60, 6124–6129.

    Article  CAS  Google Scholar 

  44. Li, F. H.; Liu, Y. H.; Mao, B. D.; Li, L. H.; Huang, H.; Zhang, D. Q.; Dong, W. X.; Kang, Z. H.; Shi, W. D. Carbon-dots-mediated highly efficient hole transfer in I-III-VI quantum dots for photocatalytic hydrogen production, Appl. Catal. B:Environ. 2021, 292, 120154.

    Article  CAS  Google Scholar 

  45. Nie, H. D.; Wei, K. Q.; Li, Y.; Liu, Y.; Zhao, Y. J.; Huang, H.; Shao, M. W.; Liu, Y.; Kang, Z. H. Carbon dots/Bi2WO6 composite with compensatory photo-electronic effect for overall water photosplitting at normal pressure, Chin. Chem. Lett. 2021, 32, 2283–2286.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by National Key R&D Program of China (Nos. 2020YFA0406104, 2020YFA0406101, and 2020YFA0406103), National MCF Energy R&D Program of China (No. 2018YFE0306105), Innovative Research Group Project of the National Natural Science Foundation of China (No. 51821002), the National Natural Science Foundation of China (Nos. 51725204, 21771132, 51972216, and 52041202), Natural Science Foundation of Jiangsu Province (No. BK20190041), Key-Area Research and Development Program of GuangDong Province (No. 2019B010933001), Collaborative Innovation Center of Suzhou Nano Science & Technology, the 111 Project, and Suzhou Key Laboratory of Functional Nano & Soft Materials.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui Huang, Yang Liu, Mingwang Shao or Zhenhui Kang.

Electronic Supplementary Material

12274_2022_4111_MOESM1_ESM.pdf

Highly efficient metal-free catalyst from cellulose for hydrogen peroxide photoproduction instructed by machine learning and transient photovoltage technology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Wang, X., Zhao, Y. et al. Highly efficient metal-free catalyst from cellulose for hydrogen peroxide photoproduction instructed by machine learning and transient photovoltage technology. Nano Res. 15, 4000–4007 (2022). https://doi.org/10.1007/s12274-022-4111-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4111-2

Keywords

Navigation