Skip to main content
Log in

N-doped CNTs capped with carbon layer armored CoFe alloy as highly stable bifunctional catalyst for oxygen electrocatalysis

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Designing and fabricating the bifunctional electrocatalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) has long posed an uphill and pressing task for the interconversion of electricity and chemicals. Baring this in mind, herein, we propose a novel hierarchical nanoarchitecture of N-doped carbon nanotubes capped with carbon layer armored CoFe alloy (CoFe@NC-NT), which is facilely fabricated by spray drying and subsequent annealing process. As a bifunctional electrocatalyst, the well-designed CoFe@NC-NT shows a remarkably low overpotential of 257 mV and a half-wave potential of 0.74 V to obtain 10 mA·cm−2 in OER and ORR, respectively. Meanwhile, it is also characterized by exceptional operating stability to meet practical application for Zn-air batteries. The high catalytic activity of CoFe@NC-NT is attributed to the tight contact between the highly conductive nanotubes and metal alloy nanoparticles. And the qualified stability is ascribed to the coating effect of carbon layer shell to alloy core. Given the unique structural evolution with enhanced oxygen-involved reaction activity, we believe that this work can provide an appealing innovative approach towards the directed self-assembly of functional nanostructures to realize satisfying overall performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gong, M.; Dai, H. J. A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Res. 2015, 8, 23–39.

    Article  CAS  Google Scholar 

  2. Chai, G. L.; Qiu, K. P.; Qiao, M.; Titirici, M. M.; Shang, C. X.; Guo, Z. X. Active sites engineering leads to exceptional ORR and OER bifunctionality in P, N Co-doped graphene frameworks. Energy Environ. Sci. 2017, 10, 1186–1195.

    Article  CAS  Google Scholar 

  3. Sun, J. Q.; Lowe, S. E.; Zhang, L. J.; Wang, Y. Z.; Pang, K. L.; Wang, Y.; Zhong, Y. L.; Liu, P. R.; Zhao, K.; Tang, Z. Y. et al. Ultrathin nitrogen-doped holey carbon@graphene bifunctional electrocatalyst for oxygen reduction and evolution reactions in alkaline and acidic media. Angew. Chem., Int. Ed. 2018, 57, 16511–16515.

    Article  CAS  Google Scholar 

  4. Wei, C.; Feng, Z. X.; Scherer, G. G.; Barber, J.; Shao-Horn, Y.; Xu, Z. J. Cations in octahedral sites: A descriptor for oxygen electrocatalysis on transition-metal spinels. Adv. Mater. 2017, 29, 1606800.

    Article  Google Scholar 

  5. Luo, M. C.; Zhao, Z. L.; Zhang, Y. L.; Sun, Y. J.; Xing, Y.; Lv, F.; Yang, Y.; Zhang, X.; Hwang, S.; Qin, Y. N. et al. PdMo bimetallene for oxygen reduction catalysis. Nature 2019, 574, 81–85.

    Article  CAS  Google Scholar 

  6. Luo, W. B.; Gao, X. W.; Chou, S. L.; Wang, J. Z.; Liu, H. K. Porous AgPd-Pd composite nanotubes as highly efficient electrocatalysts for lithium-oxygen batteries. Adv. Mater. 2015, 27, 6862–6869.

    Article  CAS  Google Scholar 

  7. Sun, Y. J.; Zhang, X.; Luo, M. C.; Chen, X.; Wang, L.; Li, Y. J.; Li, M. Q.; Qin, Y. N.; Li, C. J.; Xu, N. Y. et al. Ultrathin PtPd-based nanorings with abundant step atoms enhance oxygen catalysis. Adv. Mater. 2018, 30, 1802136.

    Article  Google Scholar 

  8. Ahsan, A.; Santiago, A. R. P.; Hong, Y.; Zhang, N.; Cano, M.; Rodriguez-Castellon, E.; Echegoyen, L.; Sreenivasan, S. T.; Noveron, J. C. Tuning of trifunctional NiCu bimetallic nanoparticles confined in a porous carbon network with surface composition and local structural distortions for the electrocatalytic oxygen reduction, oxygen and hydrogen evolution reactions. J. Am. Chem. Soc. 2020, 142, 14688–14701.

    Article  CAS  Google Scholar 

  9. Wang, Y. Y.; Kumar, A.; Ma, M.; Jia, Y.; Wang, Y.; Zhang, Y.; Zhang, G. X.; Sun, X. M.; Yan, Z. F. Hierarchical peony-like FeCo-NC with conductive network and highly active sites as efficient electrocatalyst for rechargeable Zn-air battery. Nano Res. 2020, 13, 1090–1099.

    Article  CAS  Google Scholar 

  10. Wang, B.; Hu, Y.; Yu, B.; Zhang, X. J.; Yang, D. X.; Chen, Y. F. Heterogeneous CoFe-Co8FeS8 nanoparticles embedded in CNT networks as highly efficient and stable electrocatalysts for oxygen evolution reaction. J. Power Sources 2019, 433, 126688.

    Article  CAS  Google Scholar 

  11. Li, Y. R.; Wang, Y.; Li, S. N.; Li, M. X.; Liu, Y. J.; Fang, X.; Dai, X. P.; Zhang, X. Pt3Mn alloy nanostructure with high-index facets by Sn doping modified for highly catalytic active electro-oxidation reactions. J. Catal. 2021, 395, 282–292.

    Article  CAS  Google Scholar 

  12. Lei, H.; Wang, Z. L.; Yang, F.; Huang, X. Q.; Liu, J. H.; Liang, Y. Y.; Xie, J. P.; Javed, M. S.; Lu, X. H.; Tan, S. Z. et al. NiFe nanoparticles embedded N-doped carbon nanotubes as high-efficient electrocatalysts for wearable solid-state Zn-air batteries. Nano Energy 2020, 68, 104293.

    Article  CAS  Google Scholar 

  13. Ma, N.; Jia, Y.; Yang, X. F.; She, X. L.; Zhang, L. Z.; Peng, Z.; Yao, X. D.; Yang, D. J. Seaweed biomass derived (Ni, Co)/CNT nanoaerogels: Efficient bifunctional electrocatalysts for oxygen evolution and reduction reactions. J. Mater. Chem. A 2016, 4, 6376–6384.

    Article  CAS  Google Scholar 

  14. Yu, L.; Deng, D. H.; Bao, X. H. Chain mail for catalysts. Angew. Chem., Int. Ed. 2020, 59, 15294–15297.

    Article  CAS  Google Scholar 

  15. Zheng, X. J.; Deng, J.; Wang, N.; Deng, D. H.; Zhang, W. H.; Bao, X. H.; Li, C. Podlike N-doped carbon nanotubes encapsulating FeNi alloy nanoparticles: High-performance counter electrode materials for dye-sensitized solar cells. Angew. Chem., Int. Ed. 2014, 53, 7023–7027.

    Article  CAS  Google Scholar 

  16. Deng, J.; Ren, P. J.; Deng, D. H.; Yu, L.; Yang, F.; Bao, X. H. Highly active and durable non-precious-metal catalysts encapsulated in carbon nanotubes for hydrogen evolution reaction. Energy Environ. Sci. 2014, 7, 1919–1923.

    Article  CAS  Google Scholar 

  17. Chen, G. B.; Gao, R.; Zhao, Y. F.; Li, Z. H.; Waterhouse, G. I. N.; Shi, R.; Zhao, J. Q.; Zhang, M. T.; Shang, L.; Sheng, G. Y. et al. Alumina-supported CoFe alloy catalysts derived from layered-double-hydroxide nanosheets for efficient photothermal CO2 hydrogenation to hydrocarbons. Adv. Mater. 2018, 30, 1704663.

    Article  Google Scholar 

  18. Wang, Y. Q.; Wang, H. G.; Ye, J. H.; Shi, L. Y.; Feng, X. Magnetic CoFe alloy@C nanocomposites derived from ZnCo-MOF for electromagnetic wave absorption. Chem. Eng. J. 2020, 383, 123096.

    Article  CAS  Google Scholar 

  19. Li, Y. L.; Liu, Q. L.; Zhang, S. Q.; Li, G. Q. The vital balance of graphitization and defect engineering for efficient bifunctional oxygen electrocatalyst based on N-doping carbon/CNT frameworks. ChemCatChem 2019, 11, 861–867.

    Article  CAS  Google Scholar 

  20. Wang, A. S.; Zhao, C. N.; Yu, M.; Wang, W. C. Trifunctional Co nanoparticle confined in defect-rich nitrogen-doped graphene for rechargeable Zn-air battery with a long lifetime. Appl. Catal. B: Environ. 2021, 281, 119514.

    Article  CAS  Google Scholar 

  21. Jiang, H.; Gu, J. X.; Zheng, X. S.; Liu, M.; Qiu, X. Q.; Wang, L. B.; Li, W. Z.; Chen, Z. F.; Ji, X. B.; Li, J. Defect-rich and ultrathin N doped carbon nanosheets as advanced trifunctional metal-free electrocatalysts for the ORR, OER and HER. Energy Environ. Sci. 2019, 12, 322–333.

    Article  CAS  Google Scholar 

  22. Khani, H.; Grundish, N. S.; Wipf, D. O.; Goodenough, J. B. Graphitic-shell encapsulation of metal electrocatalysts for oxygen evolution, oxygen reduction, and hydrogen evolution in alkaline solution. Adv. Energy Mater. 2020, 10, 1903215.

    Article  CAS  Google Scholar 

  23. Chen, Y.; Zhang, W. X.; Zhou, D.; Tian, H. J.; Su, D. W.; Wang, C. Y.; Stockdale, D.; Kang, F. Y.; Li, B. H.; Wang, G. X. Co-Fe mixed metal phosphide nanocubes with highly interconnected-pore architecture as an efficient polysulfide mediator for lithium-sulfur batteries. ACS Nano 2019, 13, 4731–4741.

    Article  CAS  Google Scholar 

  24. Wang, B.; Chen, Y. F.; Wang, X. Q.; Zhang, X. J.; Hu, Y.; Yu, B.; Yang, D. X.; Zhang, W. L. A microwave-assisted bubble bursting strategy to grow Co8FeS8/CoS heterostructure on rearranged carbon nanotubes as efficient electrocatalyst for oxygen evolution reaction. J. Power Sources 2020, 449, 227561.

    Article  CAS  Google Scholar 

  25. Gupta, S.; Qiao, L.; Zhao, S.; Xu, H.; Lin, Y.; Devaguptapu, S. V.; Wang, X. L.; Swihart, M. T.; Wu, G. Highly active and stable graphene tubes decorated with FeCoNi alloy nanoparticles via a template-free graphitization for bifunctional oxygen reduction and evolution. Adv. Energy Mater. 2016, 6, 1601198.

    Article  Google Scholar 

  26. Xia, B. Y.; Yan, Y.; Li, N.; Wu, H. B.; Lou, X. W.; Wang, X. A metal-organic framework-derived bifunctional oxygen electrocatalyst. Nat. Energy 2016, 1, 15006.

    Article  CAS  Google Scholar 

  27. Pachfule, P.; Shinde, D.; Majumder, M.; Xu, Q. Fabrication of carbon nanorods and graphene nanoribbons from a metal-organic framework. Nat. Chem. 2016, 8, 718–724.

    Article  CAS  Google Scholar 

  28. Wang, B.; Chen, Y. F.; Wu, Q.; Lu, Y. J.; Zhang, X. J.; Wang, X. Q.; Yu, B.; Yang, D. X.; Zhang, W. L. A Co-coordination strategy to realize janus-type bimetallic phosphide as highly efficient and durable bifunctional catalyst for water splitting. J. Mater. Sci. Technol. 2021, 74, 11–20.

    Article  CAS  Google Scholar 

  29. Asset, T.; Atanassov, P. Iron-nitrogen-carbon catalysts for proton exchange membrane fuel cells. Joule 2020, 4, 33–44.

    Article  CAS  Google Scholar 

  30. Han, C.; Chen, Z.; Zhang, N.; Colmenares, J. C.; Xu, Y. J. Hierarchically CdS decorated 1D ZnO nanorods-2D graphene hybrids: Low temperature synthesis and enhanced photocatalytic performance. Adv. Funct. Mater. 2015, 25, 221–229.

    Article  CAS  Google Scholar 

  31. Wang, B.; Chen, Y. F.; Wang, X. Q.; Ramkumar, J.; Zhang, X. J.; Yu, B.; Yang, D. X.; Karpuraranjith, M.; Zhang, W. L. rGO wrapped trimetallic sulfide nanowires as an efficient bifunctional catalyst for electrocatalytic oxygen evolution and photocatalytic organic degradation. J. Mater. Chem. A 2020, 8, 13558–13571.

    Article  CAS  Google Scholar 

  32. Wang, H. F.; Chen, L. Y.; Wang, M.; Liu, Z.; Xu, Q. Hollow spherical superstructure of carbon nanosheets for bifunctional oxygen reduction and evolution electrocatalysis. Nano Lett. 2021, 21, 3640–3648.

    Article  CAS  Google Scholar 

  33. Liu, J. M.; Wang, C. B.; Sun, H. M.; Wang, H.; Rong, F. L.; He, L. H.; Lou, Y. F.; Zhang, S.; Zhang, Z. H.; Du, M. CoOx/CoNy nanoparticles encapsulated carbon-nitride nanosheets as an efficiently trifunctional electrocatalyst for overall water splitting and Zn-air battery. Appl. Catal. B: Environ. 2020, 279, 119407.

    Article  CAS  Google Scholar 

  34. Wang, B.; Wang, X. Q.; Wang, Z. G.; Srinivas, K.; Zhang, X. J.; Yu, B.; Yang, D. X.; Zhang, W. L.; Lau, T. C.; Chen, Y. F. Electronic modulation of NiS-PBA/CNT with boosted water oxidation performance realized by a rapid microwave-assisted in-situ partial sulfidation. Chem. Eng. J. 2021, 420, 130481.

    Article  CAS  Google Scholar 

  35. Zhou, T. P.; Shan, H.; Yu, H.; Zhong, C. A.; Ge, J. K.; Zhang, N.; Chu, W. S.; Yan, W. S.; Xu, Q.; Wu, H. A. et al. Nanopore confinement of electrocatalysts optimizing triple transport for an ultrahigh-power-density zinc-air fuel cell with robust stability. Adv. Mater. 2020, 32, 2003251.

    Article  CAS  Google Scholar 

  36. Liu, M. M.; Wang, L. L.; Zhao, K. N.; Shi, S. S.; Shao, Q. S.; Zhang, L.; Sun, X. L.; Zhao, Y. F.; Zhang, J. J. Atomically dispersed metal catalysts for the oxygen reduction reaction: Synthesis, characterization, reaction mechanisms and electrochemical energy applications. Energy Environ. Sci. 2019, 12, 2890–2923.

    Article  CAS  Google Scholar 

  37. Liu, P. T.; Gao, D. Q.; Xiao, W.; Ma, L.; Sun, K.; Xi, P. X.; Xue, D. S.; Wang, J. Self-powered water-splitting devices by core-shell NiFe@N-graphite-based Zn-air batteries. Adv. Funct. Mater. 2018, 28, 1706928.

    Article  Google Scholar 

  38. Seo, M. H.; Park, M. G.; Lee, D. U.; Wang, X. L.; Ahn, W.; Noh, S. H.; Choi, S. M.; Cano, Z. P.; Han, B.; Chen, Z. W. Bifunctionally active and durable hierarchically porous transition metal-based hybrid electrocatalyst for rechargeable metal-air batteries. Appl. Catal. B: Environ. 2018, 239, 677–687.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (No. 21773024), Sichuan Science and Technology program (Nos. 2020YJ0324 and 2020YJ0262), Reformation and Development Funds for Local Region Universities from China Government in 2020 (No. ZCKJ 2020-11) and China Postdoctoral Science Foundation (No. 2019M653376).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanfu Chen.

Electronic supplementary material

12274_2022_4084_MOESM1_ESM.pdf

N-doped CNTs capped with carbon layer armored CoFe alloy as highly stable bifunctional catalyst for oxygen electrocatalysis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Srinivas, K., Liu, Y. et al. N-doped CNTs capped with carbon layer armored CoFe alloy as highly stable bifunctional catalyst for oxygen electrocatalysis. Nano Res. 15, 3971–3979 (2022). https://doi.org/10.1007/s12274-022-4084-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4084-1

Keywords

Navigation