Skip to main content
Log in

S incorporated RuO2-based nanorings for active and stable water oxidation in acid

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The design of highly active and stable RuO2-based nanostructures for acidic oxygen evolution reaction (OER) is extremely important for the development of water electrolysis technology, yet remains great challenges. We here demonstrate that the incorporation of S into RuCuO nanorings (NRs) can significantly enhance the acidic OER performance. Experimental investigations show that the incorporation of S can optimize the interaction of Ru and O, and therefore significantly suppresses the dissolution of Ru in acidic condition. The optimized catalyst (SH-RuCuO NRs) displays superior OER performance to the commercial RuO2/C. Impressively, the SH-RuCuO NRs can exhibit significantly enhanced stability for 3,000 cycles of cyclic voltammetry test and more than 250 h chronopotentiometry test at 10 mA·cm−2 in 0.5 M H2SO4. This work highlights a potential strategy for designing active and stable RuO2-based electrocatalysts for acidic OER.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu, F. S.; PooleIII, D.; Mathew, S.; Yan, N.; Hessels, J.; Orth, N.; Ivanovic-Burmazović, I.; Reek, J. N. H. Control over electrochemical water oxidation catalysis by preorganization of molecular ruthenium catalysts in self-assembled nanospheres. Angew Chem., Int. Ed. 2018, 57, 11247–11251.

    Article  CAS  Google Scholar 

  2. Suen, N. T.; Hung, S. F.; Quan, Q.; Zhang, N.; Xu, Y. J.; Chen, H. M. Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives. Chem. Soc. Rev. 2017, 46, 337–365.

    Article  CAS  Google Scholar 

  3. Lagadec, M. F.; Grimaud, A. Water electrolysers with closed and open electrochemical systems. Nat. Mater. 2020, 19, 1140–1150.

    Article  CAS  Google Scholar 

  4. Li, L. G.; Wang, P. T.; Shao, Q.; Huang, X. Q. Metallic nanostructures with low dimensionality for electrochemical water splitting. Chem. Soc. Rev. 2020, 49, 3072–3106.

    Article  CAS  Google Scholar 

  5. Lei, Z. W.; Wang, T. Y.; Zhao, B. T.; Cai, W. B.; Liu, Y.; Jiao, S. H.; Li, Q.; Cao, R. G.; Liu, M. L. Recent progress in electrocatalysts for acidic water oxidation. Adv. Energy Mater. 2020, 10, 2000478.

    Article  CAS  Google Scholar 

  6. An, L.; Wei, C.; Lu, M.; Liu, H. W.; Chen, Y. B.; Scherer, G. G.; Fisher, A. C.; Xi, P. X.; Xu, Z. J.; Yan, C. H. Recent development of oxygen evolution electrocatalysts in acidic environment. Adv. Mater. 2021, 33, 2006328.

    Article  CAS  Google Scholar 

  7. Gao, J. J.; Tao, H. B.; Liu, B. Progress of nonprecious-metal-based electrocatalysts for oxygen evolution in acidic media. Adv. Mater. 2021, 33, 2003786.

    Article  CAS  Google Scholar 

  8. Stoerzinger, K. A.; Rao, R. R.; Wang, X. R.; Hong, W. T.; Rouleau, C. M.; Shao-Horn, Y. The role of Ru redox in pH-dependent oxygen evolution on rutile ruthenium dioxide surfaces. Chem 2017, 2, 668–675.

    Article  CAS  Google Scholar 

  9. Cui, X. J.; Ren, P. J.; Ma, C.; Zhao, J.; Chen, R. X.; Chen, S. M.; Rajan, N. P.; Li, H. B.; Yu, L.; Tian, Z. Q. et al. Robust interface Ru centers for high-performance acidic oxygen evolution. Adv. Mater. 2020, 32, 1908126.

    Article  CAS  Google Scholar 

  10. Yu, J.; He, Q. J.; Yang, G. M.; Zhou, W.; Shao, Z. P.; Ni, M. Recent advances and prospective in ruthenium-based materials for electrochemical water splitting. ACS Catal. 2019, 9, 9973–10011.

    Article  CAS  Google Scholar 

  11. Katsounaros, I.; Cherevko, S.; Zeradjanin, A. R.; Mayrhofer, K. J. J. Oxygen electrochemistry as a cornerstone for sustainable energy conversion. Angew. Chem., Int. Ed. 2014, 53, 102–121.

    Article  CAS  Google Scholar 

  12. Kötz, R.; Stucki, S.; Scherson, D.; Kolb, D. M. J. In-situ identification of RuO4 as the corrosion product during oxygen evolution on ruthenium in acid media. J. Electroanal. Chem. Interfac. Electrochem. 1984, 172, 211–219.

    Article  Google Scholar 

  13. Grimaud, A.; Diaz-Morales, O.; Han, B. H.; Hong, W. T.; Lee, Y. L.; Giordano, L.; Stoerzinger, K. A.; Koper, M. T. M.; Shao-Horn, Y. Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. Nat. Chem. 2017, 9, 457–465.

    Article  CAS  Google Scholar 

  14. Hodnik, N.; Jovanovic, P.; Pavlišič, A.; Jozinović, B.; Zorko, M.; Bele, M.; Selih, V. S.; Šala, M.; Hočevar, S.; Gaberšček, M. New insights into corrosion of ruthenium and ruthenium oxide nanoparticles in acidic media. J. Phy. Chem. C 2015, 119, 10140–10147.

    Article  CAS  Google Scholar 

  15. Zhu, T.; Liu, S. H.; Huang, B.; Shao, Q.; Wang, M.; Li, F.; Tan, X. Y.; Pi, Y. C.; Weng, S. C.; Huang, B. L. et al. High-performance diluted nickel nanoclusters decorating ruthenium nanowires for pH-universal overall water splitting. Energy Environ. Sci. 2021, 14, 3194–3202.

    Article  CAS  Google Scholar 

  16. Yao, Q.; Huang, B. L.; Zhang, N.; Sun, M. Z.; Shao, Q.; Huang, X. Q. Channel-rich RuCu nanosheets for pH-universal overall water splitting electrocatalysis. Angew. Chem., Int. Ed. 2019, 58, 13983–13988.

    Article  CAS  Google Scholar 

  17. Chen, S.; Huang, H.; Jiang, P.; Yang, K.; Diao, J. F.; Gong, S. P.; Liu, S.; Huang, M. X.; Wang, H.; Chen, Q. W. Mn-doped RuO2 nanocrystals as highly active electrocatalysts for enhanced oxygen evolution in acidic media. ACS Catal. 2020, 10, 1152–1160.

    Article  CAS  Google Scholar 

  18. Cao, L. L.; Luo, Q. Q.; Chen, J. J.; Wang, L.; Lin, Y.; Wang, H. J.; Liu, X. K.; Shen, X. Y.; Zhang, W.; Liu, W. et al. Dynamic oxygen adsorption on single-atomic ruthenium catalyst with high performance for acidic oxygen evolution reaction. Nat. Commun. 2019, 10, 4849.

    Article  Google Scholar 

  19. Li, Y. P.; Zhang, J. H.; Liu, Y.; Qian, Q. Z.; Li, Z. Y.; Zhu, Y.; Zhang, G. Q. Partially exposed RuP2 surface in hybrid structure endows its bifunctionality for hydrazine oxidation and hydrogen evolution catalysis. Sci. Adv. 2020, 6, eabb4197.

    Article  CAS  Google Scholar 

  20. Zhuang, L. Z.; Jia, Y.; Liu, H. L.; Li, Z. H.; Li, M. R.; Zhang, L. Z.; Wang, X.; Yang, D. J.; Zhu, Z. H.; Yao, X. D. Sulfur-modified oxygen vacancies in iron-cobalt oxide nanosheets: Enabling extremely high activity of the oxygen evolution reaction to achieve the industrial water splitting benchmark. Angew. Chem., Int. Ed. 2020, 59, 14664–14670.

    Article  CAS  Google Scholar 

  21. Niu, S.; Jiang, W. J.; Wei, Z. X.; Tang, T.; Ma, J. M.; Hu, J. S.; Wan, L. J. Se-doping activates FeOOH for cost-effective and efficient electrochemical water oxidation. J. Am. Chem. Soc. 2019, 141, 7005–7013.

    Article  CAS  Google Scholar 

  22. Li, Z. Q.; Ren, Y. K.; Mo, L.; Liu, C. F.; Hsu, K.; Ding, Y. C.; Zhang, X. X.; Li, X. L.; Hu, L. H.; Ji, D. H. et al. Impacts of oxygen vacancies on zinc ion intercalation in VO2. ACS Nano 2020, 14, 5581–5589.

    Article  CAS  Google Scholar 

  23. Xue, Y. R.; Fang, J. J.; Wang, X. D.; Xu, Z. Y.; Zhang, Y. F.; Lv, Q. Q.; Liu, M. Y.; Zhu, W.; Zhuang, Z. B. Sulfate-functionalized RuFeOx as highly efficient oxygen evolution reaction electrocatalyst in acid. Adv. Funct. Mater. 2021, 31, 2101405.

    Article  CAS  Google Scholar 

  24. Kim K. S.; Winograd, N. X-Ray photoelectron spectroscopic studies of ruthenium-oxygen surfaces. J. Catal 1974, 35, 66–72.

    Article  CAS  Google Scholar 

  25. Lin, Y. C.; Tian, Z. Q.; Zhang, L. J.; Ma, J. Y.; Jiang, Z.; Deibert, B. J.; Ge, R. X.; Chen, L. Chromium—ruthenium oxide solid solution electrocatalyst for highly efficient oxygen evolution reaction in acidic media. Nat. Commun. 2019, 10, 162.

    Article  Google Scholar 

  26. Wen, Y. Z.; Chen, P. N.; Wang, L.; Li, S. Y.; Wang, Z. Y.; Abed, J.; Mao, X. N.; Min, Y. M.; Dinh, C. T.; De Luna, P. et al. Stabilizing highly active Ru sites by suppressing lattice oxygen participation in acidic water oxidation. J. Am. Chem. Soc. 2021, 143, 6482–6490.

    Article  CAS  Google Scholar 

  27. Ravel, B.; Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Rad. 2005, 12, 537–541.

    Article  CAS  Google Scholar 

  28. McCrory, C. C. L.; Jung, S.; Peters, J. C.; Jaramillo, T. F. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 2013, 135, 16977–16987.

    Article  CAS  Google Scholar 

  29. Zhao, S. L.; Wang, Y.; Dong, J. C.; He, C. T.; Yin, H. J.; An, P. F.; Zhao, K.; Zhang, X. F.; Gao, C.; Zhang, L. J. et al. Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution. Nat. Energy 2016, 1, 16184.

    Article  CAS  Google Scholar 

  30. Niu, W. H.; Li, Z.; Marcus, K.; Zhou, L.; Li, Y. L.; Ye, R. Q.; Liang, K.; Yang, Y. Surface-modified porous carbon nitride composites as highly efficient electrocatalyst for Zn-air batteries. Adv. Energy Mater. 2018, 8, 1701642.

    Article  Google Scholar 

  31. Bao, J.; Zhang, X. D.; Fan, B.; Zhang, J. J.; Zhou, M.; Yang, W. L.; Hu, X.; Wang, H.; Pan, B. C.; Xie, Y. Ultrathin spinel-structured nanosheets rich in oxygen deficiencies for enhanced electrocatalytic water oxidation. Angew. Chem., Int. Ed. 2015, 54, 7399–7404.

    Article  CAS  Google Scholar 

  32. Kuznetsov, D. A.; Naeem, M. A.; Kumar, P. V.; Abdala, P. M.; Fedorov, A.; Müller, C. R. Tailoring lattice oxygen binding in ruthenium pyrochlores to enhance oxygen evolution activity. J. Am. Chem. Soc. 2020, 142, 7883–7888.

    Article  CAS  Google Scholar 

  33. Chen, F. Y.; Wu, Z. Y.; Adler, Z.; Wang, H. T. Stability challenges of electrocatalytic oxygen evolution reaction: From mechanistic understanding to reactor design. Joule 2021, 5, 1704–1731.

    Article  CAS  Google Scholar 

  34. Wang, X. Y.; Pan, Z. Y.; Chu, X. F.; Huang, K. K.; Cong, Y. G.; Cao, R.; Sarangi, R.; Li, L. P.; Li, G. S.; Feng, S. H. Atomic-scale insights into surface lattice oxygen activation at the spinel/perovskite interface of Co3O4/La0.3Sr0.7CoO3. Angew. Chem., Int. Ed. 2019, 58, 11720–11725.

    Article  CAS  Google Scholar 

  35. Zhu, Y. L.; Tahini, H. A.; Hu, Z. W.; Chen, Z. G.; Zhou, W.; Komarek, A. C.; Lin, Q.; Lin, H. J.; Chen, C. T.; Zhong, Y. J. et al. Boosting oxygen evolution reaction by creating both metal ion and lattice-oxygen active sites in a complex oxide. Adv. Mater. 2020, 32, 1905025.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (Nos. 2017YFA0208200 and 2016YFA0204100), the National Natural Science Foundation of China (Nos. 22025108 and 51802206), Guangdong Provincial Natural Science Fund for Distinguished Young Scholars (No. 2021B1515020081), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and the start-up supports from Xiamen University and the Guangzhou Key Laboratory of Low Dimensional Materials and Energy Storage Devices (No. 20195010002). XAS measurements were supported by “National Synchrotron Radiation Research Center” (NSRRC) and Shanghai Synchrotron Radiation Facility (SSRF), China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Xu or Xiaoqing Huang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Q., Yu, Z., Chu, YH. et al. S incorporated RuO2-based nanorings for active and stable water oxidation in acid. Nano Res. 15, 3964–3970 (2022). https://doi.org/10.1007/s12274-022-4081-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4081-4

Keywords

Navigation