Skip to main content
Log in

Mn-doping induced electronic modulation and rich oxygen vacancies on vertically grown NiFe2O4 nanosheet array for synergistically triggering oxygen evolution reaction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Large-scale electrolysis of water to produce high-purity hydrogen is one of the effective ways to solve the energy crisis and environmental pollution problems. However, efficient, cheap and stable catalysts are one of the bottlenecks for industrial application in water splitting. Herein, a facile one-step hydrothermal process was applied to fabricate Mn-doped nickel ferrite nanosheets (Mn-NiFe2O4) which shown a low overpotential of 200 mV at 50 mA·cm−2 and a small Tafel slope of 47 mV·dec−1, together with a prominent turnover frequency (TOF) value (0.14 s−1) and robust stability. The in-situ UV—vis spectroscopy unveiled the surface reconstruction to generate NiOOH as active sites during oxygen evolution reaction (OER). The excellent electrocatalytic activity of Mn-NiFe2O4 is attributed to the vertically grown nanosheets for exposure more active sites, rich oxygen vacancies, and the hybridization between Ni 3d and O 2p orbitals caused by Mn doping. This work should provide a facile strategy by Mn-doping to simultaneously engineer oxygen vacancies and electronic structure for synergistically triggering oxygen evolution reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, Y.; Fu, J. L.; Zhao, H.; Jiang, R. J.; Tian, F.; Zhang, R. J. Tremella-like Ni3S2/MnS with ultrathin nanosheets and abundant oxygen vacancies directly used for high speed overall water splitting. Appl. Catal. B Environ. 2019, 257, 117899.

    Article  CAS  Google Scholar 

  2. Wang, Y.; Wang, D.; Li, Y. D. Rational design of single-atom site electrocatalysts: From theoretical understandings to practical applications. Adv. Mater. 2021, 33, 2008151.

    Article  CAS  Google Scholar 

  3. Wang, Y.; Wang, D. S.; Li, Y. D. A fundamental comprehension and recent progress in advanced Pt-based ORR nanocatalysts. SmartMat 2021, 2, 56–75.

    Article  CAS  Google Scholar 

  4. Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2021, DOI.

  5. Zeng, K.; Zhang, D. K. Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog. Energy Combust. Sci. 2010, 36, 307–326.

    Article  CAS  Google Scholar 

  6. Yu, X. F.; Chen, G. Y.; Wang, Y. Z.; Liu, J. W.; Pei, K.; Zhao, Y. H.; You, W. B.; Wang, L.; Zhang, J.; Xing, L. S. et al. Hierarchical coupling effect in hollow Ni/NiFe2O4-CNTs microsphere via spray-drying for enhanced oxygen evolution electrocatalysis. Nano Res. 2020, 13, 437–446.

    Article  CAS  Google Scholar 

  7. Yan, M. L.; Zhao, Z. Y.; Cui, P. X.; Mao, K.; Chen, C.; Wang, X. Z.; Wu, Q.; Yang, H.; Yang, L. J.; Hu, Z. Construction of hierarchical FeNi3@(Fe, Ni)S2 core-shell heterojunctions for advanced oxygen evolution. Nano Res. 2021, 14, 4220–4226.

    Article  CAS  Google Scholar 

  8. Zhang, M.; Zhang, J. T.; Ran, S. Y.; Qiu, L. X.; Sun, W.; Yu, Y.; Chen, J. S.; Zhu, Z. H. A robust bifunctional catalyst for rechargeable Zn-air batteries: Ultrathin NiFe-LDH nanowalls vertically anchored on soybean-derived Fe-N-C matrix. Nano Res. 2021, 14, 1175–1186.

    Article  CAS  Google Scholar 

  9. Gong, F. L.; Ye, S.; Liu, M. M.; Zhang, J. W.; Gong, L. H.; Zeng, G.; Meng, E. C.; Su, P. P.; Xie, K. F.; Zhang, Y. H. et al. Boosting electrochemical oxygen evolution over yolk-shell structured O-MoS2 nan-oreactors with sulfur vacancy and decorated Pt nanoparticles. Nano Energy 2020, 78, 105284.

    Article  CAS  Google Scholar 

  10. Wang, Y. Y.; Li, Z. G.; Zhang, P.; Pan, Y.; Zhang, Y.; Cai, Q.; Silva, S. R. P.; Liu, J.; Zhang, G. X.; Sun, X. M. et al. Flexible carbon nanofiber film with diatomic Fe-Co sites for efficient oxygen reduction and evolution reactions in wearable zinc-air batteries. Nano Energy 2021, 87, 106147.

    Article  CAS  Google Scholar 

  11. Yang, H. D.; Liu, Y.; Luo, S.; Zhao, Z. M.; Wang, X.; Luo, Y. T.; Wang, Z. X.; Jin, J.; Ma, J. T. Lateral-size-mediated efficient oxygen evolution reaction: Insights into the atomically thin quantum dot structure of NiFe2O4. ACS Catal. 2017, 7, 5557–5567.

    Article  CAS  Google Scholar 

  12. Chen, Q.; Wang, R.; Lu, F. Q.; Kuang, X. J.; Tong, Y. X.; Lu, X. H. Boosting the oxygen evolution reaction activity of NiFe2O4 nanosheets by phosphate ion functionalization. ACS Omega 2019, 4, 3493–3499.

    Article  CAS  Google Scholar 

  13. Sun, Y. F.; Gao, S.; Xie, Y. Atomically-thick two-dimensional crystals: Electronic structure regulation and energy device construction. Chem. Soc. Rev. 2014, 43, 530–546.

    Article  CAS  Google Scholar 

  14. Yin, H. J; Tang, Z. Y. Ultrathin two-dimensional layered metal hydroxides: An emerging platform for advanced catalysis, energy conversion and storage. Chem. Soc. Rev. 2016, 45, 4873–4891.

    Article  CAS  Google Scholar 

  15. Tang, T.; Jiang, W. J.; Niu, S.; Liu, N.; Luo, H.; Chen, Y. Y.; Jin, S. F.; Gao, F.; Wan, L. J.; Hu, J. S. Electronic and morphological dual modulation of cobalt carbonate hydroxides by Mn doping toward highly efficient and stable bifunctional electrocatalysts for overall water splitting. J. Am. Chem. Soc. 2017, 139, 8320–8328.

    Article  CAS  Google Scholar 

  16. Zhou, D. J.; Cai, Z.; Jia, Y.; Xiong, X. Y.; Xie, Q. X.; Wang, S. Y.; Zhang, Y.; Liu, W.; Duan, H. H.; Sun, X. M. Activating basal plane in NiFe layered double hydroxide by Mn2+ doping for efficient and durable oxygen evolution reaction. Nanoscale Horiz. 2018, 3, 532–537.

    Article  CAS  Google Scholar 

  17. Han, B. H.; Stoerzinger, K.; Tileli, V.; Gamalski, A.; Stach, E.; Shao-Horn, Y. Nanoscale structural oscillations in perovskite oxides induced by oxygen evolution. Nat. Mater. 2017, 16, 121–126.

    Article  CAS  Google Scholar 

  18. Su, P. P.; Ma, S. S.; Huang, W. J.; Boyjoo, Y.; Bai, S. Y.; Liu, J. Ca2+-doped ultrathin cobalt hydroxyl oxides derived from coordination polymers as efficient electrocatalysts for the oxidation of water. J. Mater. Chem. A 2019, 7, 19415–19422.

    Article  CAS  Google Scholar 

  19. Bao, J.; Zhang, X. D.; Fan, B.; Zhang, J. J.; Zhou, M.; Yang, W. L.; Hu, X.; Wang, H.; Pan, B. C.; Xie, Y. Ultrathin spinel-structured nanosheets rich in oxygen deficiencies for enhanced electrocatalytic water oxidation. Angew. Chem., Int. Ed. 2015, 54, 7399–7404.

    Article  CAS  Google Scholar 

  20. Liu, F.; Jin, W. Y.; Li, Y.; Zheng, L. K.; Hu, Y C.; Xu, X. W.; Xue, Y. M.; Tang, C. C.; Liu, H.; Zhang, J. Defect-rich (Co, Fe)3O4 hierarchical nanosheet arrays for efficient oxygen evolution reaction. Appl. Surf. Sci. 2020, 529, 147125.

    Article  CAS  Google Scholar 

  21. Gan, Y. H.; Dai, X. P.; Cui, M. L.; Zhao, H. H.; Nie, F.; Ren, Z. T.; Yin, X. L.; Yang, Z. H.; Wu, B. Q.; Cao, Y. H. et al. Synergistic enhancement of the oxygen evolution reaction by MoSx and sulphate on amorphous polymetallic oxide nanosheets. J. Mater. Chem. A 2021, 9, 9858–9863.

    Article  CAS  Google Scholar 

  22. Liu, Q.; Xie, L. S.; Liu, Z. A.; Du, G.; Asiri, A. M.; Sun, X. P. A Zn-doped Ni3S2 nanosheet array as a high-performance electrochemical water oxidation catalyst in alkaline solution. Chem. Comm. (Camb) 2017, 53, 12446–12449.

    Article  CAS  Google Scholar 

  23. Kong, W. S.; Luan, X. Q.; Du, H. T.; Xia, L.; Qu, F. L. Enhanced electrocatalytic activity of water oxidation in an alkaline medium via Fe doping in CoS2 nanosheets. Chem. Comm. (Camb) 2019, 55, 2469–2472.

    Article  CAS  Google Scholar 

  24. Luan, X. Q.; Du, H. T.; Kong, Y.; Qu, F. L.; Lu, L. M. A novel FeS-NiS hybrid nanoarray: An efficient and durable electrocatalyst for alkaline water oxidation. Chem. Comm. (Camb) 2019, 55, 7335–7338.

    Article  CAS  Google Scholar 

  25. Yan, K. L.; Shang, X.; Gao, W. K.; Dong, B.; Li, X.; Chi, J. Q.; Liu, Y. R.; Chai, Y. M.; Liu C. G. Ternary MnO2/NiCo2O4/NF with hierarchical structure and synergistic interaction as efficient electrocatalysts for oxygen evolution reaction. J. Alloys Compd. 2017, 719, 314–321.

    Article  CAS  Google Scholar 

  26. Sharifi, S.; Yazdani, A.; Rahimi, K. Incremental substitution of Ni with Mn in NiFe2O4 to largely enhance its supercapacitance properties. Sci. Rep. 2020, 10, 10916.

    Article  CAS  Google Scholar 

  27. Yadav, R. S.; Kuřitka, I.; Vilcakova, J.; Havlica, J.; Masilko, J.; Kalina, L.; Tkacz, J.; Enev, V.; Hajdúchová M. Structural, magnetic, dielectric, and electrical properties of NiFe2O4 spinel ferrite nanoparticles prepared by honey-mediated sol-gel combustion. J. Phys. Chem. Solids 2017, 107, 150–161.

    Article  CAS  Google Scholar 

  28. Ulpe, A. C.; Bauerfeind, K. C. L.; Granone, L. I.; Arimi, A.; Megatif, L.; Dillert, R.; Warfsmann, S.; Taffa, D. H.; Wark, M.; Bahnemann, D. et al. Photoelectrochemistry of ferrites: Theoretical predictions vs. experimental results. Z. Phys. Chem. 2020, 234, 719–776.

    Article  CAS  Google Scholar 

  29. Liu, H. X.; Peng, X. Y.; Liu, X. J.; Qi, G. C.; Luo, J. Porous Mn-doped FeP/Co3(PO4)2 nanosheets as efficient electrocatalysts for overall water splitting in a wide pH range. ChemSusChem 2019, 12, 1334–1341.

    Article  CAS  Google Scholar 

  30. Zhou, Q.; Chen, Y. P.; Zhao, G. Q.; Lin, Y.; Yu, Z. W.; Xu, X.; Wang, X. L.; Liu, H. K.; Sun, W. P.; Dou, S. X. Active-site-enriched iron-doped nickel/cobalt hydroxide nanosheets for enhanced oxygen evolution reaction. ACS Catal. 2018, 8, 5382–5390.

    Article  CAS  Google Scholar 

  31. Zhang, B. W.; Lui, Y. H.; Zhou, L.; Tang, X. H.; Hu, S. An alkaline electro-activated Fe-Ni phosphide nanoparticle-stack array for highperformance oxygen evolution under alkaline and neutral conditions. J. Mater. Chem. A 2017, 5, 13329–13335.

    Article  CAS  Google Scholar 

  32. Zhang, G.; Feng, Y. S.; Lu, W. T.; He, D.; Wang, C. Y.; Li, Y. K.; Wang, X. Y.; Cao, F. F. Enhanced catalysis of electrochemical overall water splitting in alkaline media by Fe doping in Ni3S2 nanosheet arrays. ACS Catal. 2018, 8, 5431–5441.

    Article  CAS  Google Scholar 

  33. Niu, W. H.; Li, L. G.; Liu, X J.; Wang, N.; Liu, J.; Zhou, W. J.; Tang, Z. H.; Chen, S. W. Mesoporous N-doped carbons prepared with thermally removable nanoparticle templates: An efficient electrocatalyst for oxygen reduction reaction. J. Am. Chem. Soc. 2015, 137, 5555–5562.

    Article  CAS  Google Scholar 

  34. Yin, J.; Li, Y. X.; Lv, F.; Lu, M.; Sun, K.; Wang, W.; Wang, L.; Cheng, F. Y.; Li, Y. F.; Xi, P. X. et al. Oxygen vacancies dominated NiS2/CoS2 interface porous nanowires for portable Zn-air batteries driven water splitting devices. Adv. Mater. 2017, 29, 1704681.

    Article  Google Scholar 

  35. Zhang, Y.; Zeng, Z. Y.; Ho, D. Mn dopant induced high-valence Ni3+ sites and oxygen vacancies for enhanced water oxidation. Mater. Chem. Front. 2020, 4, 1993–1999.

    Article  CAS  Google Scholar 

  36. Yin, X. L.; Dai, X. P.; Nie, F.; Ren, Z. T.; Yang, Z. H.; Gan, Y. H.; Wu, B. Q.; Cao, Y. H.; Zhang, X. Electronic modulation and proton transfer by iron and borate co-doping for synergistically triggering the oxygen evolution reaction on a hollow NiO bipyramidal prism. Nanoscale 2021, 13, 14156–14165.

    Article  CAS  Google Scholar 

  37. Kim, H.; Kim, J.; Ahn, S. H. Monitoring oxygen-vacancy ratio in NiFe-based electrocatalysts during oxygen evolution reaction in alkaline electrolyte. J. Ind. Eng. Chem. 2019, 72, 273–280.

    Article  CAS  Google Scholar 

  38. Zhang, Y.; Cheng, C. Q.; Kuai, C. G.; Sokaras, D.; Zheng, X. L.; Sainio, S.; Lin, F.; Dong, C. K.; Nordlund, D.; Du, X. W. Unveiling the critical role of the Mn dopant in a NiFe(OH)2 catalyst for water oxidation. J. Mater. Chem. A 2020, 8, 17471–17476.

    Article  CAS  Google Scholar 

  39. Jin, Y. S.; Huang, S. L.; Yue, X.; Du, H. Y.; Shen, P. K. Mo- and Fe-modified Ni(OH)2/NiOOH nanosheets as highly active and stable electrocatalysts for oxygen evolution reaction. ACS Catal. 2018, 8, 2359–2363.

    Article  CAS  Google Scholar 

  40. Wan, K.; Luo, J. S.; Zhou, C.; Zhang, T.; Arbiol, J.; Lu, X. H.; Mao, B. W.; Zhang, X.; Fransaer, J. Hierarchical porous Ni3S4 with enriched high-valence Ni Sites as a robust electrocatalyst for efficient oxygen evolution reaction. Adv. Funct. Mater. 2019, 29, 1900315.

    Article  Google Scholar 

  41. Wang, H. Y.; Hsu, Y. Y.; Chen, R.; Chan, T. S.; Chen, H. M.; Liu, B. Ni3+-induced formation of active NiOOH on the spinel Ni-Co oxide surface for efficient oxygen evolution reaction. Adv. Energy Mater. 2015, 5, 1500091.

    Article  Google Scholar 

  42. Jiang, B. B.; Cheong, W. C.; Tu, R. Y.; Sun, K. A.; Liu, S. J.; Wu, K. L.; Shang, H. S.; Huang, A. J.; Wang, M.; Zheng, L. R. et al. Regulating the electronic structure of NiFe layered double hydroxide/reduced graphene oxide by Mn incorporation for high-efficiency oxygen evolution reaction. Sci. China Mater. 2021, 64, 2729–2738.

    Article  CAS  Google Scholar 

  43. Sinsermsuksakul, P.; Sun, L. Z.; Lee, S. W.; Park, H. H.; Kim, S. B.; Yang, C. X.; Gordon, R. G. Overcoming efficiency limitations of SnS-based solar cells. Adv. Energy Mater. 2014, 4, 1400496.

    Article  Google Scholar 

  44. Morales-Guio, C. G.; Liardet, L.; Hu, X. L. Oxidatively electrodeposited thin-film transition metal (oxy)hydroxides as oxygen evolution catalysts. J. Am. Chem. Soc. 2016, 138, 8946–8957.

    Article  CAS  Google Scholar 

  45. Zhao, H. H.; Li, Z.; Deng, J. L.; Dai, X. P.; Cui, M. L.; Nie, F.; Zhang, X.; Ren, Z. T.; Wang, Y.; Song, W. Y. et al. Amorphous MoS2 nanosheets on MoO2 films/Mo foil as free-standing electrode for synergetic electrocatalytic hydrogen evolution reaction. Int. J. Hydrog. Energy 2020, 45, 17422–17433.

    Article  CAS  Google Scholar 

  46. Zheng, W. R.; Liu, M. J.; Lee, L. Y. S. Electrochemical instability of metal-organic frameworks: In situ spectroelectrochemical investigation of the real active sites. ACS Catal. 2020, 10, 81–92.

    Article  CAS  Google Scholar 

  47. Görlin, M.; De Araújo, J. F.; Schmies, H.; Bernsmeier, D.; Dresp, S.; Gliech, M.; Jusys, Z.; Chernev, P.; Kraehnert, R.; Dau, H. et al. Tracking catalyst redox states and reaction dynamics in Ni-Fe oxyhydroxide oxygen evolution reaction electrocatalysts: The role of catalyst support and electrolyte pH. J. Am. Chem. Soc. 2017, 139, 2070–2082.

    Article  Google Scholar 

  48. Dutta, S.; Indra, A.; Feng, Y.; Song, T.; Paik, U. Self-supported nickel iron layered double hydroxide-nickel selenide electrocatalyst for superior water splitting activity. ACS Appl. Mater. Interfaces 2017, 9, 33766–33774.

    Article  CAS  Google Scholar 

  49. Tang, C.; Cheng, N. Y.; Pu, Z. H.; Xing, W.; Sun, X. P. NiSe nanowire film supported on nickel foam: An efficient and stable 3D bifunctional electrode for full water splitting. Angew. Chem., Int. Ed. 2015, 54, 9351–9355.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from the National Natural Science Foundation of China (Nos. U1662104 and 21576288).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoping Dai.

Electronic Supplementary Material

12274_2021_4068_MOESM1_ESM.pdf

Mn-doping induced electronic modulation and rich oxygen vacancies on vertically grown NiFe2O4 nanosheet array for synergistically triggering oxygen evolution reaction

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gan, Y., Cui, M., Dai, X. et al. Mn-doping induced electronic modulation and rich oxygen vacancies on vertically grown NiFe2O4 nanosheet array for synergistically triggering oxygen evolution reaction. Nano Res. 15, 3940–3945 (2022). https://doi.org/10.1007/s12274-021-4068-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-4068-6

Keywords

Navigation