Skip to main content
Log in

Engineering surface strain for site-selective island growth of Au on anisotropic Au nanostructures

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Controlled growth of islands on plasmonic metal nanoparticles represents a novel strategy in creating unique morphologies that are difficult to achieve by conventional colloidal synthesis processes, where the nanoparticle morphologies are typically determined by the preferential development of certain crystal facets. This work exploits an effective surface-engineering strategy for site-selective island growth of Au on anisotropic Au nanostructures. Selective ligand modification is first employed to direct the site-selective deposition of a thin transition layer of a secondary metal, e.g., Pd, which has a considerable lattice mismatch with Au. The selective deposition of Pd on the original seeds produces a high contrast in the surface strain that guides the subsequent site-selective growth of Au islands. This strategy proves effective in not only inducing the island growth of Au on Au nanostructures but also manipulating the location of grown islands. By taking advantage of the iodide-assisted oxidative ripening process and the surface strain profile on Au nanostructures, we further demonstrate the precise control of the islands’ number, coverage, and wetting degree, allowing fine-tuning of nanoparticles’ optical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, Z. L., Zhang, C. Y., Zheng, H. R., Xu, H. X. Plasmon-driven catalysis on molecules and nanomaterials. Acc. Chem. Res. 2019, 52, 2506–2515.

    Article  CAS  Google Scholar 

  2. Li, M., Cushing, S. K., Wu, N. Q. Plasmon-enhanced optical sensors: A review. Analyst 2015, 140, 386–406.

    Article  CAS  Google Scholar 

  3. Khlebtsov, N. G., Dykman, L. A. Optical properties and biomedical applications of plasmonic nanoparticles. J. Quant. Spectrosc. Radiat. Transf. 2010, 111, 1–35.

    Article  CAS  Google Scholar 

  4. Tao, A. R., Habas, S., Yang, P. D. Shape control of colloidal metal nanocrystals. Small 2008, 4, 310–325.

    Article  CAS  Google Scholar 

  5. Xia, Y. N., Gilroy, K. D., Peng, H. C., Xia, X. H. Seed-mediated growth of colloidal metal nanocrystals. Angew. Chem., Int. Ed. 2017, 56, 60–95.

    Article  CAS  Google Scholar 

  6. Huang, X. H., Neretina, S., El-Sayed, M. A. Gold nanorods: From synthesis and properties to biological and biomedical applications. Adv. Mater. 2009, 21, 4880–4910.

    Article  CAS  Google Scholar 

  7. Polte, J. Fundamental growth principles of colloidal metal nanoparticles — a new perspective. CrystEngComm 2015, 17, 6809.6830.

    Article  CAS  Google Scholar 

  8. Chow, T. H., Li, N. N., Bai, X. P., Zhuo, X. L., Shao, L., Wang, J. F. Gold nanobipyramids: An emerging and versatile type of plasmonic nanoparticles. Acc. Chem. Res. 2019, 52, 2136–2146.

    Article  CAS  Google Scholar 

  9. Chen, J. X., Bai, Y. C., Feng, J., Yang, F., Xu, P. P., Wang, Z. C., Zhang, Q., Yin, Y. D. Anisotropic seeded growth of Ag nanoplates confined in shape-deformable spaces. Angew. Chem., Int. Ed. 2021, 60, 4117–4124.

    Article  CAS  Google Scholar 

  10. Jia, J., Liu, G. Y., Xu, W. J., Tian, X. L., Li, S. B., Han, F., Feng, Y. H., Dong, X. C., Chen, H. Y. Fine-tuning the homometallic interface of Au-on-Au nanorods and their photothermal therapy in the NIR-II window. Angew. Chem., Int. Ed. 2020, 59, 14443–14448.

    Article  CAS  Google Scholar 

  11. Huang, J. F., Zhu, Y. H., Liu, C. X., Shi, Z., Fratalocchi, A., Han, Y. Unravelling thiol’s role in directing asymmetric growth of Au nanorod-Au nanoparticle dimers. Nano Lett. 2016, 16, 617–623.

    Article  CAS  Google Scholar 

  12. Lee, H. E., Kim, R. M., Ahn, H. Y., Lee, Y. Y., Byun, G. H., Im, S. W., Mun, J., Rho, J., Nam, K. T. Cysteine-encoded chirality evolution in plasmonic rhombic dodecahedral gold nanoparticles. Nat. Commun. 2020, 11, 263.

    Article  CAS  Google Scholar 

  13. Ma, Y. J., Cao, Z. Z., Hao, J. J., Zhou, J. H., Yang, Z. J., Yang, Y. Z., Wei, J. J. Controlled synthesis of Au chiral propellers from seeded growth of Au nanoplates for chiral differentiation of biomolecules. J. Phys. Chem. C 2020, 124, 24306–24314.

    Article  CAS  Google Scholar 

  14. Tan, R. L. S., Chong, W. H., Feng, Y. H., Song, X. H., Tham, C. L., Wei, J., Lin, M., Chen, H. Y. Nanoscrews: Asymmetrical etching of silver nanowires. J. Am. Chem. Soc. 2016, 138, 10770–10773.

    Article  CAS  Google Scholar 

  15. Wang, Z. X., He, B. W., Xu, G. F., Wang, G. J., Wang, J. Y., Feng, Y. H., Su, D. M., Chen, B., Li, H., Wu, Z. H. et al. Transformable masks for colloidal nanosynthesis. Nat. Commun. 2018, 9, 563.

    Article  Google Scholar 

  16. Yip, H. K., Zhu, X. Z., Zhuo, X. L., Jiang, R. B., Yang, Z., Wang, J. F. Gold nanobipyramid-enhanced hydrogen sensing with plasmon red shifts reaching.140 nm at 2 vol% hydrogen concentration. Adv. Opt. Mater. 2017, 5, 1700740.

    Article  Google Scholar 

  17. Feng, J., Xu, D. D., Yang, F., Chen, J. X., Wu, C. L. M., Yin, Y. D. Surface engineering and controlled ripening for seed-mediated growth of au islands on Au nanocrystals. Angew. Chem., Int. Ed. 2021, 60, 16958–16964.

    Article  CAS  Google Scholar 

  18. Feng, Y. H., He, J. T., Wang, H., Tay, Y. Y., Sun, H., Zhu, L. F., Chen, H. Y. An unconventional role of ligand in continuously tuning of metal.metal interfacial strain. J. Am. Chem. Soc. 2012, 134, 2004–2007.

    Article  CAS  Google Scholar 

  19. Feng, Y. H., Wang, Y. W., He, J. T., Song, X. H., Tay, Y. Y., Hng, H. H., Ling, X. Y., Chen, H. Y. Achieving site-specificity in multistep colloidal synthesis. J. Am. Chem. Soc. 2015, 137, 7624–7627.

    Article  CAS  Google Scholar 

  20. Wang, F., Cheng, S., Bao, Z. H., Wang, J. F. Anisotropic overgrowth of metal heterostructures induced by a site-selective silica coating. Angew. Chem., Int. Ed. 2013, 52, 10344–10348.

    Article  CAS  Google Scholar 

  21. Li, F., Wang, K., Tan, Z. P., Guo, C., Liu, Y. Y., Tan, H. Y., Zhang, L. B., Zhu, J. T. Solvent quality-mediated regioselective modification of gold nanorods with thiol-terminated polymers. Langmuir 2020, 36, 15162–15168.

    Article  CAS  Google Scholar 

  22. Peng, Z. M., Yang, H. Designer platinum nanoparticles: Control of shape, composition in alloy, nanostructure and electrocatalytic property. Nano Today 2009, 4, 143–164.

    Article  CAS  Google Scholar 

  23. DeSantis, C. J., Weiner, R. G., Radmilovic, A., Bower, M. M., Skrabalak, S. E. Seeding bimetallic nanostructures as a new class of plasmonic colloids. J. Phys. Chem. Lett. 2013, 4, 3072–3082.

    Article  CAS  Google Scholar 

  24. Ding, Y., Fan, F. R., Tian, Z. Q., Wang, Z. L. Atomic structure of Au-Pd bimetallic alloyed nanoparticles. J. Am. Chem. Soc. 2010, 132, 12480–12486.

    Article  CAS  Google Scholar 

  25. Fan, Q. K., Yang, H., Ge, J., Zhang, S. M., Liu, Z. J., Lei, B., Cheng, T., Li, Y. Y., Yin, Y. D., Gao, C. B. Customizable ligand exchange for tailored surface property of noble metal nanocrystals. Research 2020, 2020, 2131806.

    Article  CAS  Google Scholar 

  26. Lewis, D. J., Zornberg, L. Z., Carter, D. J. D., Macfarlane, R. J. Single-crystal Winterbottom constructions of nanoparticle superlattices. Nat. Mater. 2020, 19, 719–724.

    Article  CAS  Google Scholar 

  27. Yin, J. C., Wu, H. N., Wang, X., Tian, L., Yang, R. L., Liu, L. Z., Shao, Y. Z. Plasmonic nano-dumbbells for enhanced photothermal and photodynamic synergistic damage of cancer cells. Appl. Phys. Lett. 2020, 116, 163702.

    Article  CAS  Google Scholar 

  28. Zhang, Y. F., Song, T. J., Feng, T., Wan, Y. L., Blum, N. T., Liu, C. B., Zheng, C. Q., Zhao, Z. Y., Jiang, T., Wang, J. W. et al. Plasmonic modulation of gold nanotheranostics for targeted NIR-II photothermal-augmented immunotherapy. Nano Today 2020, 35, 100987.

    Article  CAS  Google Scholar 

  29. Zhu, X. Z., Yip, H. K., Zhuo, X. L., Jiang, R. B., Chen, J. L., Zhu, X. M., Yang, Z., Wang, J. F. Realization of red plasmon shifts up to ~ 900 nm by AgPd-tipping elongated Au nanocrystals. J. Am. Chem. Soc. 2017, 139, 13837–13846.

    Article  CAS  Google Scholar 

  30. Ni, W. H., Kou, X. S., Yang, Z., Wang, J. F. Tailoring longitudinal surface plasmon wavelengths, scattering and absorption cross sections of gold nanorods. ACS Nano 2008, 2, 677–686.

    Article  CAS  Google Scholar 

  31. Chen, L., Ji, F., Xu, Y., He, L., Mi, Y. F., Bao, F., Sun, B. Q., Zhang, X. H., Zhang, Q. High-yield seedless synthesis of triangular gold nanoplates through oxidative etching. Nano Lett. 2014, 14, 7201–7206.

    Article  CAS  Google Scholar 

  32. Kuo, B. H., Hsia, C. F., Chen, T. N., Huang, M. H. Systematic shape evolution of gold nanocrystals achieved through adjustment in the amount of HAuCl4 solution used. J. Phys. Chem. C 2018, 122, 25118–25126.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the US National Science Foundation (CHE-1808788).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yadong Yin.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, F., Feng, J., Chen, J. et al. Engineering surface strain for site-selective island growth of Au on anisotropic Au nanostructures. Nano Res. 16, 5873–5879 (2023). https://doi.org/10.1007/s12274-021-4040-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-4040-5

Keywords

Navigation