Skip to main content
Log in

A drug/carrier dual redox-responsive system based on 6-mercaptopurine dimer-loaded cysteine polymer nanoparticles for enhanced lymphoma therapy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Many anticancer drugs have limited clinical applications owing to their unsatisfactory therapeutic efficacy or side effects. This situation can be improved by drug delivery systems or drug modification strategies. Herein, to improve the therapeutic efficacy and safety of the traditional anticancer drug 6-mercaptopurine (6-MP), we dimerized 6-MP to form a disulfide bond-containing drug dimer and prepared a cysteine-based poly (disulfide amide) with redox-responsive capability as a drug carrier. Briefly, dimeric 6-MP (DMP) was synthesized via the oxidization of iodine and self-assembled with the poly (disulfide amide) to form dual redox-responsive DMP-loaded NPs (DMP-NPs). The 6-MP itself could hardly be loaded into nanoparticles (NPs) owing to its hydrophobicity, while the DMP-NPs showed a higher drug loading capacity over 6-MP, small particle size, and favorable stability. With abundant disulfide bonds in polymer backbones and drug payloads, DMP-NPs could rapidly respond to high levels of glutathione (GSH) and release drugs in a controllable manner. More importantly, both cellular and animal experiments demonstrated the enhanced anticancer efficacy of DMP-NPs against lymphoma and their high safety. Overall, this drug dimer-loaded dual redox-responsive drug delivery system provides new options for improving the applications of traditional drugs and developing drug delivery systems with enhanced drug effects and high safety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nguyen, D. D.; Lai, J.-Y. Advancing the stimuli response of polymer-based drug delivery systems for ocular disease treatment, Poly. Chem. 2020, 11, 6988–7008.

    Article  CAS  Google Scholar 

  2. Ku, K. H. Responsive nanostructured polymer particles, Polymers 2021, 13, 273.

    Article  CAS  Google Scholar 

  3. Wang, J.; Xu, W.; Zhang, N.; Yang, C.; Xu, H.; Wang, Z.; Li, B.; Ding, J.; Chen, X. X-ray-responsive polypeptide nanogel for concurrent chemoradiotherapy, J. Control. Release 2021, 332, 1–9.

    Article  CAS  Google Scholar 

  4. Li, X.; Wang, H.; Zhang, Y.; Cao, Q.; Chen, Y. A GSH-responsive PET-based fluorescent probe for cancer cells imaging, Chin. Chem. Lett. 2021, 32, 1541–1544.

    Article  CAS  Google Scholar 

  5. Hajebi, S.; Rabiee, N.; Bagherzadeh, M.; Ahmadi, S.; Rabiee, M.; Roghani-Mamaqani, H.; Tahriri, M.; Tayebi, L.; Hamblin, M. R. Stimulus-responsive polymeric nanogels as smart drug delivery systems, Acta Biomater. 2019, 92, 1–18.

    Article  CAS  Google Scholar 

  6. Grzelczak, M.; Liz-Marzan, L. M.; Klajn, R. Stimuli-responsive self-assembly of nanoparticles, Chem. Soc. Rev. 2019, 48, 1342–1361.

    Article  CAS  Google Scholar 

  7. Chen, J.; Jiang, Z.; Xu, W.; Sun, T.; Zhuang, X.; Ding, J.; Chen, X. Spatiotemporally targeted nanomedicine overcomes hypoxia-induced drug resistance of tumor cells after disrupting neovasculature, Nano lett. 2020, 20, 6191–6198.

    Article  CAS  Google Scholar 

  8. Hsu, P.-H.; Almutairi, A. Recent progress of redox-responsive polymeric nanomaterials for controlled release, J. Mater. Chem. B. 2021, 9, 2179–2188.

    Article  CAS  Google Scholar 

  9. Feng, X.; Xu, W.; Xu, X.; Li, G.; Ding, J.; Chen, X. Cystine proportion regulates fate of polypeptide nanogel as nanocarrier for chemotherapeutics, Sci. China Chem. 2021, 64, 293–301.

    Article  CAS  Google Scholar 

  10. Fang, Z.; Wang, X.; Sun, Y.; Fan, R.; Liu, Z.; Guo, R.; Xie, D. Sgc8 aptamer targeted glutathione-responsive nanoassemblies containing Ara-C prodrug for the treatment of acute lymphoblastic leukemia, Nanoscale 2019, 11, 23000–23012.

    Article  CAS  Google Scholar 

  11. Masood, F. Polymeric nanoparticles for targeted drug delivery system for cancer therapy, Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 60, 569–578.

    Article  CAS  Google Scholar 

  12. You, X.; Kang, Y.; Hollett, G.; Chen, X.; Zhao, W.; Gu, Z.; Wu, J. Polymeric nanoparticles for colon cancer therapy: Overview and perspectives, J. Mater. Chem. B. 2016, 4, 7779–7792.

    Article  CAS  Google Scholar 

  13. Li, D.; Zhang, R.; Liu, G.; Kang, Y.; Wu, J. Redox-responsive self-assembled nanoparticles for cancer therapy, Adv. Healthc. Mater. 2020, 9, 2000605.

    Article  CAS  Google Scholar 

  14. Zhong, W.; Zhang, X.; Zeng, Y.; Lin, D.; Wu, J. Recent applications and strategies in nanotechnology for lung diseases, Nano Res. 2021, 14, 2067–2089.

    Article  CAS  Google Scholar 

  15. Feng, X.; Xu, W.; Liu, J.; Li, D.; Li, G.; Ding, J.; Chen, X. Polypeptide nanoformulation-induced immunogenic cell death and remission of immunosuppression for enhanced chemoimmunotherapy, Sci. Bull. 2021, 66, 362–373.

    Article  CAS  Google Scholar 

  16. Huang, J.; You, X.; Xin, P.; Gu, Z.; Chen, C.; Wu, J. Egg white as a natural and safe biomaterial for enhanced cancer therapy, Chin. Chem. Lett. 2021, 32, 1737–1742.

    Article  CAS  Google Scholar 

  17. Xie, J.; Lu, Y.; Yu, B.; Wu, J.; Liu, J. Galactose-modified enzymatic synthesis of poly (amino-co-ester) micelles for co-delivery miR122 and sorafenib to inhibit hepatocellular carcinoma development, Chin. Chem. Lett. 2020, 31, 1173–1177.

    Article  CAS  Google Scholar 

  18. Zheng, Y.; You, X.; Guan, S.; Huang, J.; Wang, L.; Zhang, J.; Wu, J. Poly (ferulic acid) with an anticancer effect as a drug nanocarrier for enhanced colon cancer therapy, Adv. Funct. Mater. 2019, 29, 1808646.

    Article  Google Scholar 

  19. You, X.; Wang, L.; Wang, L.; Wu, J. Rebirth of aspirin synthesis byproduct: Prickly poly (salicylic acid) nanoparticles as self-anticancer drug carrier, Adv. Funct. Mater. 2021, 31, 2100805.

    Article  CAS  Google Scholar 

  20. Ou, K.; Xu, X.; Guan, S.; Zhang, R.; Zhang, X.; Kang, Y.; Wu, J. Nanodrug carrier based on poly (ursolic acid) with self — anticancer activity against colorectal cancer, Adv. Funct. Mater. 2019, 30, 1907857.

    Article  Google Scholar 

  21. Zhang, F.; Ni, Q.; Jacobson, O.; Cheng, S.; Liao, A.; Wang, Z.; He, Z.; Yu, G.; Song, J.; Ma, Y.; Niu, G.; Zhang, L.; Zhu, G.; Chen, X. Polymeric nanoparticles with a glutathione-sensitive heterodimeric multifunctional prodrug for in vivo drug monitoring and synergistic cancer therapy, Angew. Chem. Int. Ed. 2018, 57, 7066–7070.

    Article  CAS  Google Scholar 

  22. Su, L.; Li, R.; Khan, S.; Clanton, R.; Zhang, F.; Lin, Y.-N.; Song, Y.; Wang, H.; Fan, J.; Hernandez, S.; Butters, A. S.; Akabani, G.; MacLoughlin, R.; Smolen, J.; Wooley, K. L. Chemical design of both a glutathione-sensitive dimeric drug guest and a glucose-derived nanocarrier host to achieve enhanced osteosarcoma lung metastatic anticancer selectivity, J. Am. Chem. Soc. 2018, 140, 1438–1446.

    Article  CAS  Google Scholar 

  23. Pei, Q.; Hu, X.; Zheng, X.; Liu, S.; Li, Y.; Jing, X.; Xie, Z. Light-activatable red blood cell membrane-camouflaged dimeric prodrug nanoparticles for synergistic photodynamic/chemotherapy, Acs Nano. 2018, 12, 1630–1641.

    Article  CAS  Google Scholar 

  24. Guo, X.; Wang, L.; Duval, K.; Fan, J.; Zhou, S.; Chen, Z. Dimeric drug polymeric micelles with acid-active tumor targeting and FRET-traceable drug release, Adv. Mater. 2018, 30, 1705436.

    Article  Google Scholar 

  25. Cheng, Q.; Li, S.; Ma, Y.; Yin, H.; Wang, R. pH-Responsive supramolecular DOX-dimer based on cucurbit 8 uril for selective drug release, Chin. Chem. Lett. 2020, 31, 1235–1238.

    Article  CAS  Google Scholar 

  26. Cai, K.; He, X.; Song, Z.; Yin, Q.; Zhang, Y.; Uckun, F. M.; Jiang, C.; Cheng, J. Dimeric drug polymeric nanoparticles with exceptionally high drug loading and quantitative loading efficiency, J. Am. Chem. Soc. 2015, 137, 3458–3461.

    Article  CAS  Google Scholar 

  27. Zhou, L.; Xie, H.; Chen, X.; Wan, J.; Xu, S.; Han, Y.; Chen, D.; Qiao, Y.; Zhou, L.; Zheng, S.; Wang, H. Dimerization-induced self-assembly of a redox-responsive prodrug into nanoparticles for improved therapeutic index, Acta Biomater. 2020, 113, 464–477.

    Article  CAS  Google Scholar 

  28. Zhuang, Y.; Su, Y.; Peng, Y.; Wang, D.; Deng, H.; Xi, X.; Zhu, X.; Lu, Y. Facile fabrication of redox-responsive thiol-containing drug delivery system via RAFT polymerization, Biomacromolecules 2014, 15, 1408–1418.

    Article  CAS  Google Scholar 

  29. Kamojjala, R.; Bostrom, B. Allopurinol to prevent mercaptopurine adverse effects in children and young adults with acute lymphoblastic leukemia, J. Pediatr. Hematol. Oncol. 2021, 43, 95–100.

    Article  CAS  Google Scholar 

  30. Yao, J.; Chen, J.-M.; Xu, Y.-B.; Lu, T.-B. Enhancing the solubility of 6-mercaptopurine by formation of ionic cocrystal with zinc trifluoromethanesulfonate: Single-crystal-to-single-crystal transformation, Cryst. Growth Des. 2014, 14, 5019–5025.

    Article  CAS  Google Scholar 

  31. Hussein, A.; Badr, Y. A.; Shouman, S. A.; Sliem, M. A. Improvement of 6 mercaptopurine efficiency by encapsulated in chitosan nanoparticles, Arab J. Nucl. Sci. Appl. 2018, 51, 181–186.

    Google Scholar 

  32. Zacchigna, M.; Cateni, F.; Di Luca, G.; Drioli, S. A simple method for the preparation of PEG-6-mercaptopurine for oral administration, Bioorg. Med. Chem. Lett. 2007, 17, 6607–6609.

    Article  CAS  Google Scholar 

  33. Wu, J.; Zhao, L.; Xu, X.; Bertrand, N.; Choi, W. I.; Yameen, B.; Shi, J.; Shah, V.; Mulvale, M.; MacLean, J. L.; Farokhzad, O. C. Hydrophobic cysteine poly (disulfide)-based redox-hypersensitive nanoparticle platform for cancer theranostics. Angew. Chem. Int. Ed, Engl. 2015, 54, 9218–23.

    Article  CAS  Google Scholar 

  34. Wang, J.-Q.; Wang, L.-Y.; Li, S.-J.; Tong, T.; Wang, L.; Huang, C.-S.; Xu, Q.-C.; Huang, X.-T.; Li, J.-H.; Wu, J.; Zhao, W.; Yin, X.-Y. Histone methyltransferase G9a inhibitor-loaded redox-responsive nanoparticles for pancreatic ductal adenocarcinoma therapy, Nanoscale 2020, 12, 15767–15774.

    Article  CAS  Google Scholar 

  35. Wang, L.; You, X.; Lou, Q.; He, S.; Zhang, J.; Dai, C.; Zhao, M.; Zhao, M.; Hu, H.; Wu, J. Cysteine-based redox-responsive nanoparticles for small-molecule agent delivery, Biomater. Sci. 2019, 7, 4218–4229.

    Article  CAS  Google Scholar 

  36. Ibrahim, A.; Twizeyimana, E.; Lu, N.; Ke, W.; Mukerabigwi, J. F.; Mohammed, F.; Japir, A. A.-W. M. M.; Ge, Z. Reduction-responsive polymer prodrug micelles with enhanced endosomal escape capability for efficient intracellular translocation and drug release, ACS Appl. Bio Mater. 2019, 2, 5099–5109.

    Article  CAS  Google Scholar 

  37. He, W.; Xing, X.; Wang, X.; Wu, D.; Wu, W.; Guo, J.; Mitragotri, S. Nanocarrier-mediated cytosolic delivery of biopharmaceuticals, Adv. Funct. Mater. 2020, 30, 1910566.

    Article  CAS  Google Scholar 

  38. Wilhelm, S.; Tavares, A. J.; Oin, D.; Ohta, S.; Audet, J.; Dvorak, H. F.; Chan, W. C. W. Analysis of nanoparticle delivery to tumours, Nat. Rev. Mater. 2016, 1, 1–12.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51973243 and 52173150), International Cooperation and Exchange of the National Natural Science Foundation of China (No. 51820105004), China Postdoctoral Science Foundation (No. 2020M683058), the Science and Technology Planning Project of Shenzhen (No. JCYJ20190807155801657), Guangdong Innovative and Entrepreneurial Research Team Program (No. 2016ZT06S029).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinru You or Jun Wu.

Electronic Supplementary Material

12274_2021_4037_MOESM1_ESM.pdf

A drug/carrier dual redox-responsive system based on 6-mercaptopurine dimer-loaded cysteine polymer nanoparticles for enhanced lymphoma therapy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Dai, C., Fang, Y. et al. A drug/carrier dual redox-responsive system based on 6-mercaptopurine dimer-loaded cysteine polymer nanoparticles for enhanced lymphoma therapy. Nano Res. 15, 4544–4551 (2022). https://doi.org/10.1007/s12274-021-4037-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-4037-0

Keywords

Navigation