Skip to main content
Log in

A novel hierarchical targeting and controllable smart nanoparticles for enhanced in situ nuclear photodynamic therapy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Photodynamic therapy (PDT) is a promising and non-invasive treatment for various cancers. Although nuclear PDT has considerable therapeutic prospects, it is still hindered by the non-specific recognition of tumor tissues or the degradation of nuclear targeting cationic groups by enzymes in the blood. Herein, a hierarchical targeted and controlled release strategy is proposed by using folate-modified poly-β-cyclodextrin (poly-β-CD) as a nano-carrier for loading nuclear localization signals (NLSs)-conjugated photosensitizer PAP (PAP = pyropheophorbide a—PAAKRVKLD). Excitingly, the obtained FA-CD@PAP (FA = folic acid) and nanoparticles (NPs) can specifically recognize tumor cells overexpressing folate receptors (FR) to remarkedly enhance the intracellular accumulation. Furthermore, the encapsulated PAP can be released under acidic conditions to realize precise nuclear localization. The reactive oxygen species (ROS) generated by the intranuclear-accumulated PAP upon irradiation can oxidize and destroy DNA chains or DNA repair enzymes instantaneously, which can directly induce cell death. As a result, FA-CD@PAP NPs exhibit excellent tumor regression and negligible side effects. This work provides an intelligent nuclear-targeted delivery strategy for in situ nuclear PDT with extremely prominent efficacy and high biological safety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kuimova, M. K.; Botchway, S. W.; Parker, A. W.; Balaz, M.; Collins, H. A.; Anderson, H. L.; Suhling, K.; Ogilby, P. R. Imaging intracellular viscosity of a single cell during photoinduced cell death. Nat. Chem. 2009, 1, 69–73.

    Article  CAS  Google Scholar 

  2. Lovell, J. F.; Liu, T. W. B.; Chen, J.; Zheng, G. Activatable photosensitizers for imaging and therapy. Chem. Rev. 2010, 110, 2839–2857.

    Article  CAS  Google Scholar 

  3. Li, F.; Chen, C.; Yang, X. X.; He, X. Y.; Zhao, Z. Y.; Li, J.; Yu, Y.; Yang, X. Z.; Wang, J. Acetal-linked hyperbranched polyphosphoester nanocarriers loaded with chlorin e6 for pH-activatable photodynamic therapy. ACS Appl. Mater. Interfaces 2018, 10, 21198–21205.

    Article  CAS  Google Scholar 

  4. Zhou, Z. J.; Song, J. B.; Nie, L. M.; Chen, X. Y. Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy. Chem. Soc. Rev. 2016, 45, 6597–6626.

    Article  CAS  Google Scholar 

  5. Ha, S. Y. Y.; Zhou, Y. M.; Fong, W. P.; Ng, D. K. P. Multifunctional molecular therapeutic agent for targeted and controlled dual chemo- and photodynamic therapy. J. Med. Chem. 2020, 63, 8512–8523.

    Article  CAS  Google Scholar 

  6. Zhang, F. L.; Song, M. R.; Yuan, G. K.; Ye, H. N.; Tian, Y.; Huang, M. D.; Xue, J. P.; Zhang, Z. H.; Liu, J. Y. A molecular combination of Zinc(II) phthalocyanine and tamoxifen derivative for dual targeting photodynamic therapy and hormone therapy. J. Med. Chem. 2017, 60, 6693–6703.

    Article  CAS  Google Scholar 

  7. Celli, J. P.; Spring, B. Q.; Rizvi, I.; Evans, C. L.; Samkoe, K. S.; Verma, S.; Pogue, B. W.; Hasan, T. Imaging and photodynamic therapy: Mechanisms, monitoring, and optimization. Chem. Rev. 2010, 110, 2795–2838.

    Article  CAS  Google Scholar 

  8. Moore, C. M.; Pendse, D.; Emberton, M. Photodynamic therapy for prostate cancer-a review of current status and future promise. Nat. Clin. Pract. Urol. 2009, 6, 18–30.

    Article  CAS  Google Scholar 

  9. Zhang, C.; Qin, W. J.; Bai, X. F.; Zhang, X. Z. Nanomaterials to relieve tumor hypoxia for enhanced photodynamic therapy. Nano Today 2020, 35, 100960.

    Article  CAS  Google Scholar 

  10. Lismont, M.; Dreesen, L.; Wuttke, S. Metal-organic framework nanoparticles in photodynamic therapy: Current status and perspectives. Adv. Funct. Mater. 2017, 27, 1606314.

    Article  Google Scholar 

  11. Guo, R. W.; Yang, G.; Feng, Z. J.; Zhu, Y. J.; Yang, P. X.; Song, H. J.; Wang, W. W.; Huang, P. S.; Zhang, J. H. Glutathione-induced amino-activatable micellar photosensitization platform for synergistic redox modulation and photodynamic therapy. Biomater. Sci. 2018, 6, 1238–1249.

    Article  CAS  Google Scholar 

  12. Feng, C.; Zhu, D. L.; Chen, L.; Lu, Y. L.; Liu, J.; Kim, N. Y.; Liang, S. J.; Zhang, X.; Lin, Y.; Ma, Y. B. et al. Targeted delivery of chlorin e6 via redox sensitive diselenide-containing micelles for improved photodynamic therapy in cluster of differentiation 44-overexpressing breast cancer. Front. Pharmacol. 2019, 10, 369.

    Article  CAS  Google Scholar 

  13. Yan, S.; Huang, Q.; Chen, J.; Song, X.; Chen, Z.; Huang, M.; Xu, P.; Zhang, J. Tumor-targeting photodynamic therapy based on folate-modified polydopamine nanoparticles. Int. J. Nanomed. 2019, 14, 6799–6812.

    Article  CAS  Google Scholar 

  14. Huang, Z.; Xu, H. P.; Meyers, A. D.; Musani, A. I.; Wang, L. W.; Tagg, R.; Barqawi, A. B.; Chen, Y. K. Photodynamic therapy for treatment of solid tumors-potential and technical challenges. Technol. Cancer Res. Treat. 2008, 7, 309–320.

    Article  CAS  Google Scholar 

  15. Sharman, W. M.; Allen, C. M.; van Lier, J. E. Photodynamic therapeutics: Basic principles and clinical applications. Drug Discov. Today 1999, 4, 507–517.

    Article  CAS  Google Scholar 

  16. Ethirajan, M.; Chen, Y. H.; Joshi, P.; Pandey, R. K. The role of porphyrin chemistry in tumor imaging and photodynamic therapy. Chem. Soc. Rev. 2011, 40, 340–362.

    Article  CAS  Google Scholar 

  17. Liu, C. H.; Cao, Y.; Cheng, Y. R.; Wang, D. D.; Xu, T. L.; Su, L.; Zhang, X. J.; Dong, H. F. An open source and reduce expenditure ROS generation strategy for chemodynamic/photodynamic synergistic therapy. Nat. Commun. 2020, 11, 1735.

    Article  CAS  Google Scholar 

  18. Yu, Z. Z.; Sun, Q. Q.; Pan, W.; Li, N.; Tang, B. A near-infrared triggered nanophotosensitizer inducing domino effect on mitochondrial reactive oxygen species burst for cancer therapy. ACS Nano 2015, 9, 11064–11074.

    Article  CAS  Google Scholar 

  19. Moor, A. C. E. Signaling pathways in cell death and survival after photodynamic therapy. J. Photochem. Photobiol. B: Biol. 2000, 57, 1–13.

    Article  CAS  Google Scholar 

  20. Ngen, E.; Rajaputra, P.; You, Y. Evaluation of delocalized lipophilic cationic dyes as delivery vehicles for photosensitizers to mitochondria. Bioorg. Bioorgan. Med. Chem. 2009, 17, 6631–6640.

    Article  CAS  Google Scholar 

  21. Hatz, S.; Lambert, J. D. C.; Ogilby, P. R. Measuring the lifetime of singlet oxygen in a single cell: Addressing the issue of cell viability. Photochem. Photobiol. Sci. 2007, 6, 1106–1116.

    Article  CAS  Google Scholar 

  22. Zhang, Y. Y.; Wang, L. K.; Rao, Q. P.; Bu, Y. C.; Xu, T. R.; Zhu, X. J.; Zhang, J.; Tian, Y. P.; Zhou, H. P. Tuning the hydrophobicity of pyridinium-based probes to realize the mitochondria-targeted photodynamic therapy and mitophagy tracking. Sens. Actuators B: Chem. 2020, 321, 128460.

    Article  CAS  Google Scholar 

  23. Chen, X. H.; Li, Y. X.; Li, S. W.; Gao, M.; Ren, L.; Tang, B. Z. Mitochondria- and lysosomes-targeted synergistic chemophotodynamic therapy associated with self-monitoring by dual light-up fluorescence. Adv. Funct. Mater. 2018, 28, 1804362.

    Article  Google Scholar 

  24. Xu, J. S.; Zeng, F.; Wu, H.; Hu, C. P.; Wu, S. Z. Enhanced photodynamic efficiency achieved via a dual-targeted strategy based on photosensitizer/micelle structure. Biomacromolecules 2014, 15, 4249–4259.

    Article  CAS  Google Scholar 

  25. Song, X. Y.; Yue, Z. H.; Hong, T. T.; Wang, Z. H.; Zhang, S. S. Sandwich-structured upconversion nanoprobes coated with a thin silica layer for mitochondria-targeted cooperative photodynamic therapy for solid malignant tumors. Anal. Chem. 2019, 91, 8549–8557.

    Article  CAS  Google Scholar 

  26. Pereira, P. M. R.; Silva, S.; Bispo, M.; Zuzarte, M.; Gomes, C.; Girão, H.; Cavaleiro, J. A. S.; Ribeiro, C. A. F.; Tomé, J. P. C.; Fernandes, R. Mitochondria-targeted photodynamic therapy with a galactodendritic chlorin to enhance cell death in resistant bladder cancer cells. Bioconjug. Chem. 2016, 27, 2762–2769.

    Article  CAS  Google Scholar 

  27. Xiao, Q. C.; Lin, H. R.; Wu, J.; Pang, X.; Zhou, Q. M.; Jiang, Y.; Wang, P.; Leung, W. N.; Lee, H.; Jiang, S. et al. Pyridine-embedded phenothiazinium dyes as lysosome-targeted photosensitizers for highly efficient photodynamic antitumor therapy. J. Med. Chem. 2020, 63, 4896–4907.

    Article  CAS  Google Scholar 

  28. Khaddaj, R.; Mari, M.; Cottier, S.; Reggiori, F.; Schneiter, R. The surface of lipid droplets constitutes a barrier for endoplasmic reticulum-resident integral membrane proteins. J. Cell Sci. 2022, 135, jcs256206.

    Article  CAS  Google Scholar 

  29. Li, H.; Liu, C.; Zeng, Y. P.; Hao, Y. H.; Huang, J. W.; Yang, Z. Y.; Li, R. Nanoceria-mediated drug delivery for targeted photodynamic therapy on drug-resistant breast cancer. ACS Appl. Mater. Interfaces 2016, 8, 31510–31523.

    Article  CAS  Google Scholar 

  30. Rosado, A.; Bayer, E. M. Geometry and cellular function of organelle membrane interfaces. Plant Physiol. 2021, 185, 650–662.

    Article  CAS  Google Scholar 

  31. Yin, J. L.; Huang, L.; Wu, L. L.; Li, J. F.; James, T. D.; Lin, W. Y. Small molecule based fluorescent chemosensors for imaging the microenvironment within specific cellular regions. Chem. Soc. Rev. 2021, 50, 12098–12150.

    Article  CAS  Google Scholar 

  32. Saito, A.; Imaizumi, K. Unfolded protein response-dependent communication and contact among endoplasmic reticulum, mitochondria, and plasma membrane. Int. J. Mol. Sci. 2018, 19, 3215.

    Article  Google Scholar 

  33. Tilokani, L.; Nagashima, S.; Paupe, V.; Prudent, J. Mitochondrial dynamics: Overview of molecular mechanisms. Essays Biochem. 2018, 62, 341–360.

    Article  Google Scholar 

  34. Yue, J.; Liang, L. J.; Shen, Y. T.; Guan, X.; Zhang, J.; Li, Z. Y.; Deng, R.; Xu, S. P.; Liang, C. Y.; Shi, W. et al. Investigating dynamic molecular events in melanoma cell nucleus during photodynamic therapy by SERS. Front. Chem. 2019, 6, 665.

    Article  Google Scholar 

  35. Huo, S. D.; Jin, S. B.; Ma, X. W.; Xue, X. D.; Yang, K. N.; Kumar, A.; Wang, P. C.; Zhang, J. C.; Hu, Z. B.; Liang, X. J. Ultrasmall gold nanoparticles as carriers for nucleus-based gene therapy due to size-dependent nuclear entry. ACS Nano 2014, 8, 5852–5862.

    Article  CAS  Google Scholar 

  36. Lim, S. H.; Thivierge, C.; Nowak-Sliwinska, P.; Han, J. Y.; van den Bergh, H.; Wagnières, G.; Burgess, K.; Lee, H. B. In vitro and in vivo photocytotoxicity of boron dipyrromethene derivatives for photodynamic therapy. J. Med. Chem. 2010, 53, 2865–2874.

    Article  CAS  Google Scholar 

  37. Derycke, A. S. L.; De Witte, P. A. M. Liposomes for photodynamic therapy. Adv. Drug Deliv. Rev. 2004, 56, 17–30.

    Article  CAS  Google Scholar 

  38. Cheng, Y.; Samia, A. C.; Meyers, J. D.; Panagopoulos, I.; Fei, B. W.; Burda, C. Highly efficient drug delivery with gold nanoparticle vectors for in vivo photodynamic therapy of cancer. J. Am. Chem. Soc. 2008, 130, 10643–10647.

    Article  CAS  Google Scholar 

  39. Tian, B.; Wang, C.; Zhang, S.; Feng, L. Z.; Liu, Z. Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide. ACS Nano 2011, 5, 7000–7009.

    Article  CAS  Google Scholar 

  40. Khan, M.; Kumar, B.; Zhao, Y.; Hassan, M.; Liu, Y.; Wang, L.; Liu, H.; Jiang, W. Stepwise-activatable hypoxia triggered nanocarrier-based photodynamic therapy for effective synergistic bioreductive chemotherapy. Biomaterials 2020, 245, 119982.

    Article  Google Scholar 

  41. Marfori, M.; Mynott, A.; Ellis, J. J.; Mehdi, A. M.; Saunders, N. F. W.; Curmi, P. M.; Forwood, J. K.; Bodén, M.; Kobe, B. Molecular basis for specificity of nuclear import and prediction of nuclear localization. Biochim. Biophys. Acta (BBA)-Mol. Cell Res. 2011, 1813, 1562–1577.

    Article  CAS  Google Scholar 

  42. Dosio, F.; Arpicco, S.; Stella, B.; Fattal, E. Hyaluronic acid for anticancer drug and nucleic acid delivery. Adv. Drug Deliv. Rev. 2016, 97, 204–236.

    Article  CAS  Google Scholar 

  43. Belting, M.; Sandgren, S.; Wittrup, A. Nuclear delivery of macromolecules: Barriers and carriers. Adv. Drug Deliv. Rev. 2005, 57, 505–527.

    Article  CAS  Google Scholar 

  44. Chow, K. H.; Factor, R. E.; Ullman, K. S. The nuclear envelope environment and its cancer connections. Nat. Rev. Cancer 2012, 12, 196–209.

    Article  CAS  Google Scholar 

  45. Zhang, Y. Y.; Lv, F.; Cheng, Y. R.; Yuan, Z. P.; Yang, F.; Liu, C. H.; Cao, Y.; Zhang, K.; Lu, H. T.; Zada, S. et al. Pd@Au bimetallic nanoplates decorated mesoporous MnO2 for synergistic nucleus-targeted NIR-II photothermal and hypoxia-relieved photodynamic therapy. Adv. Healthc. Mater. 2020, 9, 1901528.

    Article  CAS  Google Scholar 

  46. Han, K.; Zhang, W. Y.; Zhang, J.; Lei, Q.; Wang, S. B.; Liu, J. W.; Zhang, X. Z.; Han, H. Y. Acidity-triggered tumor-targeted chimeric peptide for enhanced intra-nuclear photodynamic therapy. Adv. Funct. Mater. 2016, 26, 4351–4361.

    Article  CAS  Google Scholar 

  47. Pan, L. M.; Liu, J. N.; Shi, J. L. Intranuclear photosensitizer delivery and photosensitization for enhanced photodynamic therapy with ultralow irradiance. Adv. Funct. Mater. 2014, 24, 7318–7327.

    Article  CAS  Google Scholar 

  48. Wan, G. Y.; Cheng, Y. Y.; Song, J.; Chen, Q.; Chen, B. W.; Liu, Y. Y.; Ji, S. L.; Chen, H. L.; Wang, Y. S. Nucleus-targeting near-infrared nanoparticles based on TAT peptide-conjugated IR780 for photo-chemotherapy of breast cancer. Chem. Eng. J. 2020, 380, 122458.

    Article  CAS  Google Scholar 

  49. Makkerh, J. P. S.; Dingwall, C.; Laskey, R. A. Comparative mutagenesis of nuclear localization signals reveals the importance of neutral and acidic amino acids. Curr. Biol. 1996, 6, 1025–1027.

    Article  CAS  Google Scholar 

  50. Dang, C. V.; Lee, W. M. Identification of the human c-myc protein nuclear translocation signal. Mol. Cell Biol. 1988, 8, 4048–4054.

    CAS  Google Scholar 

  51. Day, A. H.; Übler, M. H.; Best, H. L.; Lloyd-Evans, E.; Mart, R. J.; Fallis, I. A.; Allemann, R. K.; Al-Wattar, E. A. H.; Keymer, N. I.; Buurma, N. J.; Pope, S. J. A. Targeted cell imaging properties of a deep red luminescent iridium(III) complex conjugated with a c-Myc signal peptide. Chem. Sci. 2020, 11, 1599–1606.

    Article  CAS  Google Scholar 

  52. Zhang, Y. M.; Liu, Y. H.; Liu, Y. Cyclodextrin-based multistimuli-responsive supramolecular assemblies and their biological functions. Adv. Mater. 2020, 32, 1806158.

    Article  CAS  Google Scholar 

  53. Dai, X. Y.; Dong, X. Y.; Liu, Z. X.; Liu, G. X.; Liu, Y. Controllable singlet oxygen generation in water based on cyclodextrin secondary assembly for targeted photodynamic therapy. Biomacromolecules 2020, 21, 5369–5379.

    Article  CAS  Google Scholar 

  54. Hu, Q. D.; Tang, G. P.; Chu, P. K. Cyclodextrin-based host-guest supramolecular nanoparticles for delivery: From design to applications. Acc. Chem. Res. 2014, 47, 2017–2025.

    Article  CAS  Google Scholar 

  55. He, L. L.; Yang, X. H.; Zhao, F.; Wang, K. M.; Wang, Q.; Liu, J. B.; Huang, J.; Li, W. S.; Yang, M. Self-assembled supramolecular nanoprobes for ratiometric fluorescence measurement of intracellular pH values. Anal. Chem. 2015, 87, 2459–2465.

    Article  CAS  Google Scholar 

  56. Li, B. J.; Feng, Z. Z.; He, L. L.; Li, W. S.; Wang, Q.; Liu, J. B.; Huang, J.; Zheng, Y.; Ma, Y. Y.; Yang, X. H. et al. Self-assembled supramolecular nanoparticles for targeted delivery and combination chemotherapy. ChemMedChem 2018, 13, 2037–2044.

    Article  CAS  Google Scholar 

  57. Koopmans, C.; Ritter, H. Formation of Physical Hydrogels via Host-Guest Interactions of β-Cyclodextrin Polymers and Copolymers Bearing Adamantyl Groups. Macromolecules 2008, 41, 7418–7422.

    Article  CAS  Google Scholar 

  58. Huang, L.; Tonelli, A. E. Polymer inclusion compounds. J. Macromol. Sci. C 1998, 38, 781–837.

    Article  Google Scholar 

  59. Fan, W. B.; Xu, Y. D.; Li, Z.; Li, Q. Folic acid-modified β-cyclodextrin nanoparticles as drug delivery to load DOX for liver cancer therapeutics. Soft Mater. 2019, 17, 437–447.

    Article  CAS  Google Scholar 

  60. Ang, C. Y.; Tan, S. Y.; Teh, C.; Lee, J. M.; Wong, M. F. E.; Qu, Q. Y.; Poh, L. Q.; Li, M. H.; Zhang, Y. Y.; Korzh, V. et al. Redox and pH dual responsive polymer based nanoparticles for in vivo drug delivery. Small 2017, 13, 1602379.

    Article  Google Scholar 

  61. Ang, C. Y.; Tan, S. Y.; Wang, X. L.; Zhang, Q.; Khan, M.; Bai, L. Y.; Tamil Selvan, S.; Ma, X.; Zhu, L. L.; Nguyen, K. T. et al. Supramolecular nanoparticle carriers self-assembled from cyclodextrin- and adamantane-functionalized polyacrylates for tumor-targeted drug delivery. J. Mater. Chem. B 2014, 2, 1879–1890.

    Article  CAS  Google Scholar 

  62. Xu, X. Y.; Zeng, Z. S.; Chen, J.; Huang, B. Y.; Guan, Z. L.; Huang, Y. J.; Huang, Z. Q.; Zhao, C. S. Tumor-targeted supramolecular catalytic nanoreactor for synergistic chemo/chemodynamic therapy via oxidative stress amplification and cascaded Fenton reaction. Chem. Eng. J. 2020, 390, 124628.

    Article  CAS  Google Scholar 

  63. Bai, Y.; Liu, C. P.; Chen, D.; Liu, C. F.; Zhuo, L. H.; Li, H.; Wang, C.; Bu, H. T.; Tian, W. β-Cyclodextrin-modified hyaluronic acid-based supramolecular self-assemblies for pH- and esterase- dual-responsive drug delivery. Carbohydr. Polym. 2020, 246, 116654.

    Article  CAS  Google Scholar 

  64. Wankar, J.; Kotla, N. G.; Gera, S.; Rasala, S.; Pandit, A.; Rochev, Y. A. Recent advances in host-guest self-assembled cyclodextrin carriers: Implications for responsive drug delivery and biomedical engineering. Adv. Funct. Mater. 2020, 30, 1909049.

    Article  CAS  Google Scholar 

  65. Parker, N.; Turk, M. J.; Westrick, E.; Lewis, J. D.; Low, P. S.; Leamon, C. P. Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay. Anal. Biochem. 2005, 338, 284–293.

    Article  CAS  Google Scholar 

  66. Ribeiro, D. T.; De Oliveira, R. C.; Mascio, P. D.; Menck, C. F. M. Singlet oxygen induces predominantly G to T transversions on a single-stranded shuttle vector replicated in monkey cells. Free Radic. Res. 1994, 21, 75–83.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Nos. 81703345 and 21974009), the Natural Science Foundation of Fujian Province (No. 2021J01549) and the National Health and Family Planning Commission Jointly established a scientific research fund (No. WKJ2016-2-14). We thank Servicebio Co., Ltd. (Wuhan, China) for technical support on tissue sections and fluorescent staining during in vivo experiments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao Jia or Juanjuan Chen.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, G., Wang, Q., You, Z. et al. A novel hierarchical targeting and controllable smart nanoparticles for enhanced in situ nuclear photodynamic therapy. Nano Res. 15, 4212–4223 (2022). https://doi.org/10.1007/s12274-021-4027-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-4027-2

Keywords

Navigation