Skip to main content
Log in

Flash-assisted doping graphene for ultrafast potassium transport

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Graphene has been widely used for electrical energy storage and its performances could be further improved by heteroatom doping. How to prepare doped graphene efficiently and economically remains a significant challenge. Here, we propose a flash-assisted doping method to produce nitrogen- and sulfur-doped graphene (N-rGO and S-rGO). Using this method, graphene oxide (GO) is reduced to few-layer graphene (rGO) in seconds without the use of reductants, accompanied with a high doping efficiency. Particularly, the as-synthesized N-rGO with a high N content of 12.75 at.% used as potassium-ion battery (KIB) anode exhibits ultrafast K+-transport kinetics and superior K+-storage capability. Quantitative kinetics analysis and theoretical simulation are used to reveal the mechanism of transportation and storage of K+ in N-rGO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Teng, F. Z.; McDonough, W. F.; Rudnick, R. L.; Dalpé, C.; Tomascak, P. B.; Chappell, B. W.; Gao, S. Lithium isotopic composition and concentration of the upper continental crust. Geochim. Cosmochim. Acta 2004, 68, 4167–4178.

    Article  CAS  Google Scholar 

  2. Seyfried Jr, W. E.; Janecky, D. R.; Mottl, M. J. Alteration of the oceanic crust: Implications for geochemical cycles of lithium and boron. Geochim. Cosmochim. Acta 1984, 48, 557–569.

    Article  CAS  Google Scholar 

  3. Luo, W.; Wan, J. Y.; Ozdemir, B.; Bao, W. Z.; Chen, Y. N.; Dai, J. Q.; Lin, H.; Xu, Y.; Gu, F.; Barone, V. et al. Potassium ion batteries with graphitic materials. Nano Lett. 2015, 75, 7671–7677.

    Article  Google Scholar 

  4. Zhang, R. D.; Huang, J. J.; Deng, W. Z.; Bao, J. Z.; Pan, Y. L.; Huang, S. P.; Sun, C. F. Safe, low-cost, fast-kinetics and low-strain inorganic-open-framework anode for potassium-ion batteries. Angew. Chem., Int. Ed. 2019, 58, 16474–16479.

    Article  CAS  Google Scholar 

  5. Jian, Z. L.; Luo, W.; Ji, X. L. Carbon electrodes for K-ion batteries. J. Am. Chem. Soc. 2015, 137, 11566–11569.

    Article  CAS  Google Scholar 

  6. Zhao, J.; Zou, X. X.; Zhu, Y. J.; Xu, Y. H.; Wang, C. S. Electrochemical intercalation of potassium into graphite. Adv. Funct. Mater. 2016, 26, 8103–8110.

    Article  CAS  Google Scholar 

  7. Kim, H.; Yoon, G.; Lim, K.; Kang, K. A comparative study of graphite electrodes using the co-intercalation phenomenon for rechargeable Li, Na and K batteries. Chem. Commun. 2016, 52, 12618–12621.

    Article  CAS  Google Scholar 

  8. Li, X. J.; Lei, Y.; Qin, L.; Han, D.; Wang, H. W.; Zhai, D. Y.; Li, B. H.; Kang, F. Y. Mildly-expanded graphite with adjustable interlayer distance as high-performance anode for potassium-ion batteries. Carbon 2021, 172, 200–206.

    Article  CAS  Google Scholar 

  9. Xu, Y.; Zhang, C. L.; Zhou, M.; Fu, Q.; Zhao, C. X.; Wu, M. H.; Lei, Y. Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries. Nat. Commun. 2018, 9, 1720.

    Article  Google Scholar 

  10. Liu, Y.; Lu, Y. X.; Xu, Y. S.; Meng, Q. S.; Gao, J. C.; Sun, Y. G.; Hu, Y. S.; Chang, B. B.; Liu, C. T.; Cao, A. M. Pitch-derived soft carbon as stable anode material for potassium ion batteries. Adv. Mater. 2020, 32, 2000505.

    Article  CAS  Google Scholar 

  11. Yang, J. L.; Ju, Z. C.; Jiang, Y.; Xing, Z.; Xi, B. J.; Feng, J. K.; Xiong, S. L. Enhanced capacity and rate capability of nitrogen/oxygen dual-doped hard carbon in capacitive potassium-ion storage. Adv. Mater. 2018, 30, 1700104.

    Article  Google Scholar 

  12. Cao, J. H.; Zhong, J.; Xu, H. J.; Li, S. Y.; Deng, H. L.; Wang, T.; Fan, L.; Wang, X. H.; Wang, L.; Zhu, J. et al. N/S co-doped carbon nanosheet bundles as high-capacity anode for potassium-ion battery. Nano Res. 2022, 15, 2040–2046.

    Article  CAS  Google Scholar 

  13. Li, D. P.; Ren, X. H.; Ai, Q.; Sun, Q.; Zhu, L.; Liu, Y.; Liang, Z.; Peng, R. Q.; Si, P. C.; Lou, J. et al. Facile fabrication of nitrogen-doped porous carbon as superior anode material for potassium-ion batteries. Adv. Energy Mater. 2018, 8, 1802386.

    Article  Google Scholar 

  14. Li, D. P.; Sun, Q.; Zhang, Y. M.; Dai, X. Y.; Ji, F. J.; Li, K. K.; Yuan, Q. H.; Liu, X. J.; Ci, L. J. Fast and stable K-ion storage enabled by synergistic interlayer and pore-structure engineering. Nano Res. 2021, 14, 4502–4511.

    Article  CAS  Google Scholar 

  15. Jian, Z. L.; Hwang, S. Y.; Li, Z. F.; Hernandez, A. S.; Wang, X. F.; Xing, Z. Y.; Su, D.; Ji, X. L. Hard-soft composite carbon as a long-cycling and high-rate anode for potassium-ion batteries. Adv. Funct. Mater. 2017, 27, 1700324.

    Article  Google Scholar 

  16. Xing, Z. Y.; Qi, Y. T.; Jian, Z. L.; Ji, X. L. Polynanocrystalline graphite: A new carbon anode with superior cycling performance for K-ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 4343–4351.

    Article  CAS  Google Scholar 

  17. Wang, S. J.; Xiong, P.; Guo, X.; Zhang, J. Q.; Gao, X. C.; Zhang, F.; Tang, X.; Notten, P. H. L.; Wang, G. X. A stable conversion and alloying anode for potassium-ion batteries: A combined strategy of encapsulation and confinement. Adv. Funct. Mater. 2020, 30, 2001588.

    Article  CAS  Google Scholar 

  18. Zhao, S. Q.; Liu, Z. C.; Xie, G. S.; Guo, X.; Guo, Z. Q.; Song, F.; Li, G. H.; Chen, C.; Xie, X. Q.; Zhang, N. et al. Achieving highperformance 3D K+-pre-intercalated Ti3C2Tx MXene for potassium-ion hybrid capacitors via regulating electrolyte solvation structure. Angew. Chem., Int. Ed., in press, DOI: https://doi.org/10.1002/anie.202112090.

  19. Yoo, E.; Kim, J.; Hosono, E.; Zhou, H. S.; Kudo, T.; Honma, I. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett. 2008, 8, 2277–2282.

    Article  CAS  Google Scholar 

  20. Liang, K. L.; Li, M. F.; Hao, Y. K.; Yan, W. G.; Cao, M. H.; Fan, S. Q.; Han, W. P.; Su, J. Reduced graphene oxide with 3D interconnected hollow channel architecture as high-performance anode for Li/Na/K-ion storage. Chem. Eng. J. 2020, 394, 124956.

    Article  CAS  Google Scholar 

  21. Wu, Z. S.; Ren, W. C.; Xu, L.; Li, F.; Cheng, H. M. Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. ACS Nano 2011, 5, 5463–5471.

    Article  CAS  Google Scholar 

  22. Zhao, Y.; Sun, Z. T.; Yi, Y. Y.; Lu, C.; Wang, M. L.; Xia, Z.; Lian, X. Y.; Liu, Z. F.; Sun, J. Y. Precise synthesis of N-doped graphitic carbon via chemical vapor deposition to unravel the dopant functions on potassium storage toward practical K-ion batteries. Nano Res. 2021, 14, 1413–1420.

    Article  CAS  Google Scholar 

  23. Ma, C. C.; Shao, X. H.; Cao, D. P. Nitrogen-doped graphenenanosheets as anode materials for lithium ion batteries: A first-principles study. J. Mater. Chem. 2012, 22, 8911–8915.

    Article  CAS  Google Scholar 

  24. Zhou, L. J.; Hou, Z. F.; Wu, L. M. First-principles study of lithium adsorption and diffusion on graphene with point defects. J. Phys. Chem. C 2012, 116, 21780–21787.

    Article  CAS  Google Scholar 

  25. Yao, F.; Günes, F.; Ta, H. Q.; Lee, S. M.; Chae, S. J.; Sheem, K. Y.; Cojocaru, C. S.; Xie, S. S.; Lee, Y. H. Diffusion mechanism of lithium ion through basal plane of layered graphene. J. Am. Chem. Soc. 2012, 134, 8646–8654.

    Article  CAS  Google Scholar 

  26. Share, K.; Cohn, A. P.; Carter, R.; Rogers, B.; Pint, C. L. Role of nitrogen-doped graphene for improved high-capacity potassium ion battery anodes. ACS Nano 2016, 10, 9738–9744.

    Article  CAS  Google Scholar 

  27. Share, K.; Cohn, A. P.; Carter, R. E.; Pint, C. L. Mechanism of potassium ion intercalation staging in few layered graphene from in situ Raman spectroscopy. Nanoscale 2016, 8, 16435–16439.

    Article  CAS  Google Scholar 

  28. Ju, Z. C.; Li, P. Z.; Ma, G. Y.; Xing, Z.; Zhuang, Q. C.; Qian, Y. T. Few layer nitrogen-doped graphene with highly reversible potassium Storage. Energy Storage Mater. 2018, 11, 38–46.

    Article  Google Scholar 

  29. McAllister, M. J.; Li, J. L.; Adamson, D. H.; Schniepp, H. C.; Abdala, A. A.; Liu, J.; Herrera-Alonso, M.; Milius, D. L.; Car, R.; Prud’homme, R. K. et al. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 2007, 19, 4396–4404.

    Article  CAS  Google Scholar 

  30. Lee, S. W.; Mattevi, C.; Chhowalla, M.; Sankaran, R. M. Plasmaassisted reduction of graphene oxide at low temperature and atmospheric pressure for flexible conductor applications. J. Phys. Chem. Lett. 2012, 3, 772–777.

    Article  CAS  Google Scholar 

  31. Kudin, K. N.; Ozbas, B.; Schniepp, H. C.; Prud’homme, R. K.; Aksay, I. A.; Car, R. Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 2008, 8, 36–41.

    Article  CAS  Google Scholar 

  32. Tung, V. C.; Allen, M. J.; Yang, Y.; Kaner, R. B. High-throughput solution processing of large-scale graphene. Nat. Nanotechnol. 2009, 4, 25–29.

    Article  CAS  Google Scholar 

  33. Sheng, Z. H.; Shao, L.; Chen, J. J.; Bao, W. J.; Wang, F. B.; Xia, X. H. Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano 2011, 5, 4350–4358.

    Article  CAS  Google Scholar 

  34. Li, Y. P.; Yang, C. H.; Zheng, F. H.; Ou, X.; Pan, Q. C.; Liu, Y. Z.; Wang, G. High pyridine N-doped porous carbon derived from metal-organic frameworks for boosting potassium-ion storage. J. Mater. Chem. A 2018, 6, 17959–17966.

    Article  CAS  Google Scholar 

  35. Lin, Y. C.; Teng, P. Y.; Yeh, C. H.; Koshino, M.; Chiu, P. W.; Suenaga, K. Structural and chemical dynamics of pyridinic-nitrogen defects in graphene. Nano Lett. 2015, 15, 7408–7413.

    Article  CAS  Google Scholar 

  36. Shaju, K. M.; Rao, G. V. S.; Chowdari, B. V. R. Influence of Li-ion kinetics in the cathodic performance of layered Li (Ni1/3Co1/3Mn1/3)O2. J. Electrochem. Soc. 2004, 151, A1324–A1332.

    Article  CAS  Google Scholar 

  37. Wang, W.; Zhou, J. H.; Wang, Z. P.; Zhao, L. Y.; Li, P. H.; Yang, Y.; Yang, C.; Huang, H. X.; Guo, S. J. Short-range order in mesoporous carbon boosts potassium-ion battery performance. Adv. Energy Mater. 2018, 8, 1701648.

    Article  Google Scholar 

  38. Augustyn, V.; Come, J.; Lowe, M. A.; Kim, J. W.; Taberna, P. L.; Tolbert, S. H.; Abruña, H. D.; Simon, P.; Dunn, B. High-rate electrochemical energy storage through Li+ incercalotion pseudocapacitance. Nat. Mater. 2013, 12, 518–522.

    Article  CAS  Google Scholar 

  39. Jian, Z. L.; Xing, Z. Y.; Bommier, C.; Li, Z. F.; Ji, X. L. Hard carbon microspheres: Potassium-ion anode versus sodium-ion anode. Adv. Energy Mater. 2016, 6, 1501874.

    Article  Google Scholar 

  40. Liu, L.; Chen, Y.; Xie, Y. H.; Tao, P.; Li, Q. Y.; Yan, C. L. Understanding of the ultrastable K-ion storage of carbonaceous anode. Adv. Funct. Mater. 2018, 28, 1801989.

    Article  Google Scholar 

  41. Cao, B.; Zhang, Q.; Liu, H.; Xu, B.; Zhang, S. L.; Zhou, T. F.; Mao, J. F.; Pang, W. K.; Guo, Z. P.; Li, A. et al. Graphitic carbon nanocage as a stable and high power anode for potassium-ion batteries. Adv. Energy Mater. 2018, 8, 1801149.

    Article  Google Scholar 

  42. Ding, J.; Zhang, H. L.; Zhou, H.; Feng, J.; Zheng, X. R.; Zhong, C.; Paek, E.; Hu, W. B.; Mitlin, D. Sulfur-grafted hollow carbon spheres for potassium-ion battery anodes. Adv. Mater. 2019, 31, 1900429.

    Article  Google Scholar 

  43. Yang, W. X.; Zhou, J. H.; Wang, S.; Zhang, W. Y.; Wang, Z. C.; Lv, F.; Wang, K.; Sun, Q.; Guo, S. J. Freestanding film made by necklace-like N-doped hollow carbon with hierarchical pores for high-performance potassium-ion storage. Energy Environ. Sci. 2019, 12, 1605–1612.

    Article  CAS  Google Scholar 

  44. Sonia, F. J.; Jangid, M. K.; Aslam, M.; Johari, P.; Mukhopadhyay, A. Enhanced and faster potassium storage in graphene with respect to graphite: A comparative study with lithium storage. ACS Nano 2019, 13, 2190–2204.

    CAS  Google Scholar 

  45. Qie, L.; Chen, W. M.; Xiong, X. Q.; Hu, C. C.; Zou, F.; Hu, P.; Huang, Y. H. Sulfur-doped carbon with enlarged interlayer distance as a high-performance anode material for sodium-ion batteries. Adv. Sci. 2015, 2, 1500195.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Excellent Young Scholar Research Foundation of Sichuan University (No. 2017SCU04A07) and Sichuan Science and Technology Program (No. 2019YFG0218). The authors thank Dr. Yibing Li from University of New South Wales for their help with analysis of research results and Prof. Li Wu from Analytical & Testing Centre Sichuan University for her help with Raman test. C. Z. thanks Australian Research Council for the award of Future Fellowship (No. FT170100224).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dan Xiao or Chuan Zhao.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Chen, X., Cen, W. et al. Flash-assisted doping graphene for ultrafast potassium transport. Nano Res. 15, 4083–4090 (2022). https://doi.org/10.1007/s12274-021-4023-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-4023-6

Keywords

Navigation