Skip to main content
Log in

Plasmon-mediated photodecomposition of NH3 via intramolecular charge transfer

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

As an excellent clean medium for hydrogen storage and fuel cell applications, the photolysis of ammonia via localized surface plasmon could be invoked as a promising route towards significantly reducing the temperature for conventional thermolysis. Here, we explore the underlying microscopic mechanism of ultrafast carrier dynamics in plasmon-mediated NH3 photodecomposition at the single-molecular level using real-time time-dependent density functional theory. The NH3 molecule adsorbed on the tip of archetypal magic metal clusters represented by tetrahedral Ag20 and icosahedral Ag147, splits within a hundred femtoseconds upon laser pulse illumination. We found that the splitting of the first N-H bond is dominated by the intramolecular charge transfer driven by localized surface plasmon. Surprisingly, the phase of laser pulse could modulate the dynamics of charge transfer and thus affect the plasmon-induced bond breaking. These findings offer a new avenue for NH3 decomposition and provide in-depth insights in designing highly efficient plasmon-mediated photocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schüth, F.; Palkovits, R.; Schlögl, R.; Su, D. S. Ammonia as a possible element in an energy infrastructure: Catalysts for ammonia decomposition. Energy Environ. Sci. 2012, 5, 6278–6289.

    Article  Google Scholar 

  2. Lamb, K. E.; Dolan, M. D.; Kennedy, D. F. Ammonia for hydrogen storage: A review of catalytic ammonia decomposition and hydrogen separation and purification. Int. J. Hydrogen Energy 2019, 44, 3580–3593.

    Article  CAS  Google Scholar 

  3. Guo, J. P.; Chen, P. Catalyst: NH3 as an energy carrier. Chem 2017, 3, 709–712.

    Article  CAS  Google Scholar 

  4. Wu, H.; Cheng, Y. J.; Fan, Y. P.; Lu, X. M.; Li, L. X.; Liu, B. Z.; Li, B. J.; Lu, S. Y. Metal-catalyzed hydrolysis of ammonia borane: Mechanism, catalysts, and challenges. Int. J. Hydrogen Energy 2020, 45, 30325–30340.

    Article  CAS  Google Scholar 

  5. Wu, H.; Cheng, Y. J.; Wang, B. Y.; Wang, Y.; Wu, M.; Li, W. D.; Liu, B. Z.; Lu, S. Y. Carbon dots-confined CoP-CoO nanoheterostructure with strong interfacial synergy triggered the robust hydrogen evolution from ammonia borane. J. Energy Chem. 2021, 57, 198–205.

    Article  CAS  Google Scholar 

  6. Wu, H.; Wu, M.; Wang, B. Y.; Yong, X.; Liu, Y. S.; Li, B. J.; Liu, B. Z.; Lu, S. Y. Interface electron collaborative migration of Co-Co3O4/carbon dots: Boosting the hydrolytic dehydrogenation of ammonia borane. J. Energy Chem. 2020, 48, 43–53.

    Article  Google Scholar 

  7. Wang, Z. Q.; Cai, Z. F.; Wei, Z. Highly active ruthenium catalyst supported on barium hexaaluminate for ammonia decomposition to COx-free hydrogen. ACS Sustainable Chem. Eng. 2019, 7, 8226–8235.

    Article  CAS  Google Scholar 

  8. Tsai, W.; Vajo, J. J.; Weinberg, W. H. Inhibition by hydrogen of the heterogeneous decomposition of ammonia on platinum. J. Phys. Chem. 1985, 89, 4926–4932.

    Article  CAS  Google Scholar 

  9. Tsai, W.; Weinberg, W. H. Steady-state decomposition of ammonia on the ruthenium(001) surface. J. Phys. Chem. 1987, 91, 5302–5307.

    Article  CAS  Google Scholar 

  10. Wang, L.; Yi, Y. H.; Zhao, Y.; Zhang, R.; Zhang, J. L.; Guo, H. C. NH3 decomposition for H2 generation: Effects of cheap metals and supports on plasma-catalyst synergy. ACS Catal. 2015, 5, 4167–4174.

    Article  CAS  Google Scholar 

  11. Hayashi, F.; Toda, Y.; Kanie, Y.; Kitano, M.; Inoue, Y.; Yokoyama, T.; Hara, M.; Hosono, H. Ammonia decomposition by ruthenium nanoparticles loaded on inorganic electride C12A7: e. Chem. Sci. 2013, 4, 3124–3130.

    Article  CAS  Google Scholar 

  12. Yeo, S. C.; Han, S. S.; Lee, H. M. Mechanistic investigation of the catalytic decomposition of ammonia (NH3) on an Fe(100) surface: A DFT study. J. Phys. Chem. C 2014, 118, 5309–5316.

    Article  CAS  Google Scholar 

  13. Guo, W.; Vlachos, D. G. Patched bimetallic surfaces are active catalysts for ammonia decomposition. Nat. Commun. 2015, 6, 8619.

    Article  CAS  Google Scholar 

  14. Hansgen, D. A.; Vlachos, D. G.; Chen, J. G. Using first principles to predict bimetallic catalysts for the ammonia decomposition reaction. Nat. Chem. 2010, 2, 484–489.

    Article  CAS  Google Scholar 

  15. Zheng, W. Q.; Cotter, T. P.; Kaghazchi, P.; Jacob, T.; Frank, B.; Schlichte, K.; Zhang, W.; Su, D. S.; Schüth, F.; Schlögl, R. Experimental and theoretical investigation of molybdenum carbide and nitride as catalysts for ammonia decomposition. J. Am. Chem. Soc. 2013, 135, 3458–3464.

    Article  CAS  Google Scholar 

  16. Nie, S. M.; Emory, S. R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 1997, 275, 1102–1106.

    Article  CAS  Google Scholar 

  17. Prodan, E.; Radloff, C.; Halas, N. J.; Nordlander, P. A hybridization model for the plasmon response of complex nanostructures. Science 2003, 302, 419–422.

    Article  CAS  Google Scholar 

  18. Xu, H. X.; Bjerneld, E. J.; Käll, M.; Börjesson, L. Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys. Rev. Lett. 1999, 83, 4357–4360.

    Article  CAS  Google Scholar 

  19. Robatjazi, H.; Bahauddin, S. M.; Doiron, C.; Thomann, I. Direct plasmon-driven photoelectrocatalysis. Nano Lett. 2015, 15, 6155–6161.

    Article  CAS  Google Scholar 

  20. Christopher, P.; Xin, H. L.; Linic, S. Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nat. Chem. 2011, 3, 467–472.

    Article  CAS  Google Scholar 

  21. Linic, S.; Christopher, P.; Ingram, D. B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 2011, 10, 911–921.

    Article  CAS  Google Scholar 

  22. Linic, S.; Christopher, P.; Xin, H. L.; Marimuthu, A. Catalytic and photocatalytic transformations on metal nanoparticles with targeted geometric and plasmonic properties. Acc. Chem. Res. 2013, 46, 1890–1899.

    Article  CAS  Google Scholar 

  23. Swearer, D. F.; Zhao, H. Q.; Zhou, L. N.; Zhang, C.; Robatjazi, H.; Martirez, J. M. P.; Krauter, C. M.; Yazdi, S.; McClain, M. J.; Ringe, E. et al. Heterometallic antenna-reactor complexes for photocatalysis. Proc. Natl. Acad. Sci. USA 2016, 113, 8916–8920.

    Article  CAS  Google Scholar 

  24. Hartland, G. V. Optical studies of dynamics in noble metal nanostructures. Chem. Rev. 2011, 111, 3858–3887.

    Article  CAS  Google Scholar 

  25. Giannini, V.; Fernández-Domínguez, A. I.; Heck, S. C.; Maier, S. A. Plasmonic nanoantennas: Fundamentals and their use in controlling the radiative properties of nanoemitters. Chem. Rev. 2011, 111, 3888–3912.

    Article  CAS  Google Scholar 

  26. Yang, H.; Wang, Z. H.; Zheng, Y. Y.; He, L. Q.; Zhan, C.; Lu, X. H.; Tian, Z. Q.; Fang, P. P.; Tong, Y. X. Tunable wavelength enhanced photoelectrochemical cells from surface plasmon resonance. J. Am. Chem. Soc. 2016, 138, 16204–16207.

    Article  CAS  Google Scholar 

  27. Sprague-Klein, E. A.; Negru, B.; Madison, L. R.; Coste, S. C.; Rugg, B. K.; Felts, A. M.; McAnally, M. O.; Banik, M.; Apkarian, V. A.; Wasielewski, M. R. et al. Photoinduced plasmon-driven chemistry in trans-1, 2-bis(4-pyridyl)ethylene gold nanosphere oligomers. J. Am. Chem. Soc. 2018, 140, 10583–10592.

    Article  CAS  Google Scholar 

  28. Zhang, H. W.; Itoi, T.; Konishi, T.; Izumi, Y. Dual photocatalytic roles of light: Charge separation at the band gap and heat via localized surface plasmon resonance to convert CO2 into CO over silver-zirconium oxide. J. Am. Chem. Soc. 2019, 141, 6292–6301.

    Article  CAS  Google Scholar 

  29. Hu, C. Y.; Chen, X.; Jin, J. B.; Han, Y.; Chen, S. M.; Ju, H. X.; Cai, J.; Qiu, Y. R.; Gao, C.; Wang, C. M. et al. Surface plasmon enabling nitrogen fixation in pure water through a dissociative mechanism under mild conditions. J. Am. Chem. Soc. 2019, 141, 7807–7814.

    Article  CAS  Google Scholar 

  30. Rao, V. G.; Aslam, U.; Linic, S. Chemical requirement for extracting energetic charge carriers from plasmonic metal nanoparticles to perform electron-transfer reactions. J. Am. Chem. Soc. 2019, 141, 643–647.

    Article  CAS  Google Scholar 

  31. Brongersma, M. L.; Halas, N. J.; Nordlander, P. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 2015, 10, 25–34.

    Article  CAS  Google Scholar 

  32. Linic, S.; Aslam, U.; Boerigter, C.; Morabito, M. Photochemical transformations on plasmonic metal nanoparticles. Nat. Mater. 2015, 14, 567–576.

    Article  CAS  Google Scholar 

  33. Thrall, E. S.; Steinberg, A. P.; Wu, X. M.; Brus, L. E. The role of photon energy and semiconductor substrate in the plasmon-mediated photooxidation of citrate by silver nanoparticles. J. Phys. Chem. C 2013, 117, 26238–26247.

    Article  CAS  Google Scholar 

  34. Mukherjee, S.; Libisch, F.; Large, N.; Neumann, O.; Brown, L. V.; Cheng, J.; Lassiter, J. B.; Carter, E. A.; Nordlander, P.; Halas, N. J. Hot electrons do the impossible: Plasmon-induced dissociation of H2 on Au. Nano Lett. 2013, 13, 240–247.

    Article  CAS  Google Scholar 

  35. Mukherjee, S.; Zhou, L. N.; Goodman, A. M.; Large, N.; Ayala-Orozco, C.; Zhang, Y.; Nordlander, P.; Halas, N. J. Hot-electron-induced dissociation of H2 on gold nanoparticles supported on SiO2. J. Am. Chem. Soc. 2014, 136, 64–67.

    Article  CAS  Google Scholar 

  36. Zhang, Y.; Nelson, T.; Tretiak, S.; Guo, H.; Schatz, G. C. Plasmonic hot-carrier-mediated tunable photochemical reactions. ACS Nano 2018, 12, 8415–8422.

    Article  CAS  Google Scholar 

  37. Yan, L.; Ding, Z. J.; Song, P.; Wang, F. W.; Meng, S. Plasmon-induced dynamics of H2 splitting on a silver atomic chain. Appl. Phys. Lett. 2015, 107, 083102.

    Article  Google Scholar 

  38. Yan, L.; Wang, F. W.; Meng, S. Quantum mode selectivity of plasmon-induced water splitting on gold nanoparticles. ACS Nano 2016, 10, 5452–5458.

    Article  CAS  Google Scholar 

  39. Yan, J.; Jacobsen, K. W.; Thygesen, K. S. First-principles study of surface plasmons on Ag(111) and H/Ag(111). Phys. Rev. B 2011, 84, 235430.

    Article  Google Scholar 

  40. Kale, M. J.; Avanesian, T.; Xin, H. L.; Yan, J.; Christopher, P. Controlling catalytic selectivity on metal nanoparticles by direct photoexcitation of adsorbate-metal bonds. Nano Lett. 2014, 14, 5405–5412.

    Article  CAS  Google Scholar 

  41. Kale, M. J.; Avanesian, T.; Christopher, P. Direct photocatalysis by plasmonic nanostructures. ACS Catal. 2014, 4, 116–128.

    Article  CAS  Google Scholar 

  42. Kumar, P. V.; Rossi, T. P.; Marti-Dafcik, D.; Reichmuth, D.; Kuisma, M.; Erhart, P.; Puska, M. J.; Norris, D. J. Plasmon-induced direct hot-carrier transfer at metal-acceptor interfaces. ACS Nano 2019, 13, 3188–3195.

    Article  CAS  Google Scholar 

  43. Zhou, L.; Swearer, D. F.; Zhang, C.; Robatjazi, H.; Zhao, H. Q.; Henderson, L.; Dong, L. L.; Christopher, P.; Carter, E. A.; Nordlander, P. et al. Quantifying hot carrier and thermal contributions in plasmonic photocatalysis. Science 2018, 362, 69–72.

    Article  CAS  Google Scholar 

  44. Bao, J. L.; Carter, E. A. Surface-plasmon-induced ammonia decomposition on copper: Excited-state reaction pathways revealed by embedded correlated wavefunction theory. ACS Nano 2019, 13, 9944–9957.

    Article  CAS  Google Scholar 

  45. Rycenga, M.; Cobley, C. M.; Zeng, J.; Li, W. Y.; Moran, C. H.; Zhang, Q.; Qin, D.; Xia, Y. N. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem. Rev. 2011, 111, 3669–3712.

    Article  CAS  Google Scholar 

  46. Bradford, M. C. J.; Fanning, P. E.; Vannice, M. A. Kinetics of NH3 decomposition over well dispersed Ru. J. Catal. 1997, 172, 479–484.

    Article  CAS  Google Scholar 

  47. Ganley, J. C.; Thomas, F.; Seebauer, E. G.; Masel, R. I. A priori catalytic activity correlations: The difficult case of hydrogen production from ammonia. Catal. Lett. 2004, 96, 117–122.

    Article  CAS  Google Scholar 

  48. Aikens, C. M.; Li, S. Z.; Schatz, G. C. From discrete electronic states to plasmons: TDDFT optical absorption properties of Agn(n= 10, 20, 35, 56, 84, 120) tetrahedral clusters. J. Phys. Chem. C 2008, 112, 11272–11279.

    Article  CAS  Google Scholar 

  49. Song, P.; Nordlander, P.; Gao, S. W. Quantum mechanical study of the coupling of plasmon excitations to atomic-scale electron transport. J. Chem. Phys. 2011, 134, 074701.

    Article  Google Scholar 

  50. Yan, L.; Xu, J. Y.; Wang, F. W.; Meng, S. Plasmon-induced ultrafast hydrogen production in liquid water. J. Phys. Chem. Lett. 2018, 9, 63–69.

    Article  CAS  Google Scholar 

  51. Awazu, K.; Fujimaki, M.; Rockstuhl, C.; Tominaga, J.; Murakami, H.; Ohki, Y.; Yoshida, N.; Watanabe, T. A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide. J. Am. Chem. Soc. 2008, 130, 1676–1680.

    Article  CAS  Google Scholar 

  52. Adleman, J. R.; Boyd, D. A.; Goodwin, D. G.; Psaltis, D. Heterogenous catalysis mediated by plasmon heating. Nano Lett. 2009, 9, 4417–4423.

    Article  CAS  Google Scholar 

  53. Golubev, A. A.; Khlebtsov, B. N.; Rodriguez, R. D.; Chen, Y.; Zahn, D. R. T. Plasmonic heating plays a dominant role in the plasmon-induced photocatalytic reduction of 4-nitrobenzenethiol. J. Phys. Chem. C 2018, 122, 5657–5663.

    Article  CAS  Google Scholar 

  54. Townsend, E.; Bryant, G. W. Plasmonic properties of metallic nanoparticles: The effects of size quantization. Nano Lett. 2012, 12, 429–434.

    Article  CAS  Google Scholar 

  55. Townsend, E.; Bryant, G. W. Which resonances in small metallic nanoparticles are plasmonic? J. Opt. 2014, 16, 114022.

    Article  Google Scholar 

  56. Ma, J.; Wang, Z.; Wang, L. W. Interplay between plasmon and single-particle excitations in a metal nanocluster. Nat. Commun. 2015, 6, 10107.

    Article  CAS  Google Scholar 

  57. Kazuma, E.; Jung, J.; Ueba, H.; Trenary, M.; Kim, Y. Real-space and real-time observation of a plasmon-induced chemical reaction of a single molecule. Science 2018, 360, 521–526.

    Article  CAS  Google Scholar 

  58. Castro, A.; Appel, H.; Oliveira, M.; Rozzi, C. A.; Andrade, X.; Lorenzen, F.; Marques, M. A. L.; Gross, E. K. U.; Rubio, A. Octopus: A tool for the application of time-dependent density functional theory. Phys. Status Solidi (B) 2006, 243, 2465–2488.

    Article  CAS  Google Scholar 

  59. Andrade, X.; Alberdi-Rodriguez, J.; Strubbe, D. A.; Oliveira, M. J. T.; Nogueira, F.; Castro, A.; Muguerza, J.; Arruabarrena, A.; Louie, S. G.; Aspuru-Guzik, A. et al. Time-dependent density-functional theory in massively parallel computer architectures: The OCTOPUS project. J. Phys.:Condens. Matter 2012, 24, 233202.

    Google Scholar 

  60. Andrade, X.; Strubbe, D.; De Giovannini, U.; Larsen, A. H.; Oliveira, M. J. T.; Alberdi-Rodriguez, J.; Varas, A.; Theophilou, I.; Helbig, N.; Verstraete, M. J. et al. Real-space grids and the octopus code as tools for the development of new simulation approaches for electronic systems. Phys. Chem. Chem. Phys. 2015, 17, 31371–31396.

    Article  CAS  Google Scholar 

  61. Meng, S.; Kaxiras, E. Real-time, local basis-set implementation of time-dependent density functional theory for excited state dynamics simulations. J. Chem. Phys. 2008, 129, 054110.

    Article  Google Scholar 

  62. Ma, W.; Zhang, J.; Yan, L.; Jiao, Y.; Gao, Y.; Meng, S. Recent progresses in real-time local-basis implementation of time dependent density functional theory for electron-nucleus dynamics. Comput. Mater. Sci. 2016, 112, 478–486.

    Article  CAS  Google Scholar 

  63. Lian, C.; Guan, M. X.; Hu, S. Q.; Zhang, J.; Meng, S. Photoexcitation in solids: First-principles quantum simulations by real-time TDDFT (Adv. Theory Simul. 8/2018). Adv. Theory Simul. 2018, 1, 1870018.

    Article  Google Scholar 

  64. Troullier, N.; Martins, J. L. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 1991, 43, 1993–2006.

    Article  CAS  Google Scholar 

  65. Yabana, K.; Bertsch, G. F. Time-dependent local-density approximation in real time. Phys. Rev. B 1996, 54, 4484–4487.

    Article  CAS  Google Scholar 

  66. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from MOST, the National Key Research and Development Project (No. 2021YFA1400200), the National Natural Science Foundation of China (NSFC) (Nos. 12025407, 11774396, 91850120, 11934003, and 11674289), and CAS (XDB330301).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shunfang Li or Sheng Meng.

Additional information

Notes

The authors declare no competing interests.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Meng, W., Chen, D. et al. Plasmon-mediated photodecomposition of NH3 via intramolecular charge transfer. Nano Res. 15, 3894–3900 (2022). https://doi.org/10.1007/s12274-021-4021-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-4021-8

Keywords

Navigation