Skip to main content
Log in

A garnet-electrolyte based molten Li-I2 battery with high performance

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Lithium-iodine (Li-I2) battery exhibits high potential to match with high-rate property and large energy density. However, problems of the system, such as evident sublimation of iodine elements, dissolution of iodine species in electrolyte, and lithium anode corrosion, prevent the practical use of rechargeable Li-I2 batteries. In this work, a molten Li-I2 typical cell design which has distinct advantages based on the solid-state garnet electrolyte with the eutectic iodate cathode is firstly developed. The U-shaped ceramic electrolyte tube can separate Li anode from the eutectic iodate cathode, so as to better tackle the above-mentioned inherent challenges for the liquid electrolyte systems. Without self-discharging and lithium anode corrosion, this solid-state battery system demonstrates high safety margin and excellent electrochemical performance. Also, the simple battery structure also indicates the easy assembly process and recycling of electrode materials. With the cathode loading of 593 mg in a single cell, an energy density of ∼ 506.7 Wh·kg−1 was achieved at 1 C and a long-term cycling life for 2,000 cycles also displays negligible capacity decay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.

    Article  CAS  Google Scholar 

  2. Larcher, D.; Tarascon J M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 2015, 7, 19–29.

    Article  CAS  Google Scholar 

  3. Li, Z. H.; He, Q.; Zhou, C.; Li, Y.; Liu, Z. H.; Hong, X. F.; Xu, X.; Zhao, Y.; Mai, L. Rationally design lithiophilic surfaces toward high-energy lithium metal battery. Energy Stor. Mater. 2021, 37, 40–46.

    Google Scholar 

  4. Huang, K. S.; Bi, S.; Kurt, B.; Xu, C. Y.; Wu, L. Y.; Li, Z. W.; Feng, G.; Zhang, X. G. Regulation of SEI Formation by anion receptors to achieve ultra-stable lithium-metal batteries. Angew. Chem., Int. Ed. 2021, 23, 19232–19240.

    Article  Google Scholar 

  5. Lin, X.; Yu, J.; Effat, M. B.; Zhou, G. D.; Robson, M. J.; Kwok, S. C. T.; Li, H. J.; Zhan, S. Y.; Shang, Y. L.; Ciucci, F. Ultrathin and non-flammable dual-salt polymer electrolyte for high-energy-density lithium-metal Battery. Adv. Funct. Mater. 2021, 31, 2010261.

    Article  CAS  Google Scholar 

  6. Meng, Z.; Tan, X. J.; Zhang, S. L.; Ying, H. J.; Yan, X. F.; Tian, H. J.; Wang, G. X.; Han, W. Q. Ultra-stable binder-free rechargeable Li/I2 batteries enabled by “Betadine” chemical interaction. Chem. Commun. 2018, 54, 12337–12340.

    Article  CAS  Google Scholar 

  7. Qiao, L.; Wang, C.; Zhao, X. S. Encapsulation of iodine in nitrogen-containing porous carbon plate arrays on carbon fiber cloth as a freestanding cathode for lithium-iodine batteries. ACS Appl. Energy Mater. 2021, 4, 7012–7019.

    Article  CAS  Google Scholar 

  8. Ma, J. Z.; Liu, M. M.; He, Y. L.; Zhang, J. T. Iodine redox chemistry in rechargeable batteries. Angew. Chem., Int. Ed. 2021, 60, 12636–12647.

    Article  CAS  Google Scholar 

  9. Zhao, X. Y.; Zhao-Karger, Z.; Fichtner, M.; Shen, X. D. Halide-based materials and chemistry for rechargeable batteries. Angew. Chem., Int. Ed. 2020, 132, 5902–5949.

    Article  Google Scholar 

  10. Zhang, Q.; Zeng, Y. H.; Ye, S. H.; Liu, S. Inclusion complexation enhanced cycling performance of iodine/carbon composites for lithium-iodine battery. J. Power Sources 2020, 463, 228212.

    Article  CAS  Google Scholar 

  11. Li, K. D.; Lin, B.; Li, Q. F.; Wang, H. F.; Zhang, S.; Deng, C. Anchoring iodine to N-doped hollow carbon fold-hemisphere: Toward a fast and stable cathode for rechargeable lithium-iodine batteries. ACS Appl. Mater. Interfaces 2017, 9, 20508–20518.

    Article  CAS  Google Scholar 

  12. Sonigara, K. K.; Zhao, J. W.; Machhi, H. K.; Cui, G. L.; Soni, S. S. Self-assembled solid-state gel catholyte combating iodide diffusion and self-discharge for a stable flexible aqueous Zn-I2 battery. Adv. Energy Mater. 2020, 10, 2001997.

    Article  CAS  Google Scholar 

  13. Tang, X.; Zhou, D.; Li, P.; Guo, X.; Wang, C. Y.; Kang, F. Y.; Li, B. H.; Wang, G. X. High-performance quasi-solid-state MXene-based Li-I batteries. ACS Cent. Sci. 2019, 5, 365–373.

    Article  CAS  Google Scholar 

  14. Liu, F. C.; Liu, W. M.; Zhan, M. H.; Fu, Z. W.; Li, H. An all solid-state rechargeable lithium-iodine thin film battery using LiI (3-hydroxypropionitrile)2 as an I ion electrolyte. Energy Environ. Sci 2011, 4, 1261–1264.

    Article  CAS  Google Scholar 

  15. Li, K.; Chen, S.; Chen, S.; Liu, X. E.; Pan, W.; Zhang, J. T. Nitrogen, phosphorus co-doped carbon cloth as self-standing electrode for lithium-iodine batteries. Nano Res 2019, 12, 549–555.

    Article  CAS  Google Scholar 

  16. Sun, C.; Shi, X. L.; Zhang, Y. B.; Liang, J. J.; Qu, J.; Lai, C. Ti3C2Tx MXene interface layer driving ultra-stable lithium-iodine batteries with both high iodine content and mass loading. ACS Nano 2020, 14, 1176–1184.

    Article  CAS  Google Scholar 

  17. Liu, K.; Lang, J. L.; Yang, M. Z.; Xu, J.; Sun, B.; Wu, Y. L.; Wang, K. Y.; Zheng, Z. K.; Huang, Z. Y.; Wang, C. A. et al. Molten lithium-brass/zinc chloride system as high-performance and low-cost battery. Matter 2020, 3, 1714–1724.

    Article  Google Scholar 

  18. Sun, B.; Liu, K.; Lang, J. L.; Fang, M. H.; Jin, Y.; Wu, H. Ionic liquid enabling stable interface in solid state lithium sulfur batteries working at room temperature. Electrochim. Acta 2018, 284, 662–668.

    Article  CAS  Google Scholar 

  19. Sun, B.; Jin, Y.; Lang, J. L.; Liu, K.; Fang, M. H.; Wu, H. A painted layer for high-rate and high-capacity solid-state lithium-metal batteries. Chem. Commun. 2019, 55, 6704–6707.

    Article  CAS  Google Scholar 

  20. Jin, Y.; Liu, K.; Lang, J. L.; Zhuo, D.; Huang, Z. Y.; Wang, C. A.; Wu, H.; Cui, Y. An intermediate temperature garnet-type solid electrolyte-based molten lithium battery for grid energy storage. Nat. Energy 2011, 3, 732–738.

    Article  Google Scholar 

  21. Wu, Z. Z.; Xu, J. T.; Zhang, Q.; Wang, H. B.; Ye, S. H.; Wang, Y. L.; Lai, C. LiI embedded meso-micro porous carbon polyhedrons for lithium iodine battery with superior lithium storage properties. Energy Stor. Mater. 2011, 10, 62–68.

    Google Scholar 

  22. Tian, H. J.; Zhang, S. L.; Meng, Z.; He, W.; Han, W. Q. Rechargeable aluminum/iodine battery redox chemistry in ionic liquid electrolyte. ACS Energy Lett. 2017, 2, 1170–1176.

    Article  CAS  Google Scholar 

  23. Lu, K.; Hu, Z. Y.; Ma, J. Z.; Ma, H. Y.; Dai, L. M.; Zhang, J. T. A rechargeable iodine-carbon battery that exploits ion intercalation and iodine redox chemistry. Nat. Commun. 2017, 8, 527.

    Article  Google Scholar 

  24. Wang, F. X.; Liu, Z. C.; Yang, C. Q.; Zhong, H. X.; Nam, G.; Zhang, P. P.; Dong, R. H.; Wu, Y. P.; Cho, J.; Zhang, J. et al. Fully conjugated phthalocyanine copper metal-organic frameworks for sodium-iodine batteries with long-time-cycling durability. Adv. Mater. 2020, 32, 1905361.

    Article  CAS  Google Scholar 

  25. Weppner, W.; Huggins, R. A. Determination of the kinetic parameters of mixed-conducting electrodes and application to the system Li3Sb. J. Electrochem. Soc. 1977, 124, 1569.

    Article  CAS  Google Scholar 

  26. Shaju, K. M.; Rao, G. V. S.; Chowdari, B. V. R. EIS and GITT studies on oxide cathodes, O2-Li(2/3)+x (Co0.15Mn0.85) O2 (x = 0 and 1/3). Electrochim. Acta 2003, 48, 2691–2703.

    Article  CAS  Google Scholar 

  27. Wu, S. L.; Zhang, W.; Song, X. Y.; Shukla, A. K.; Liu, G.; Battaglia, V.; Srinivasan, V. High rate capability of Li(Ni1/3Mn1/3Co1/3)O2 electrode for Li-ion batteries. J. Electrochem. Soc. 2012, 159, A438.

    Article  CAS  Google Scholar 

  28. Cai, F. S.; Duan, Y. Q.; Yuan, Z. H. Iodine/β-cyclodextrin composite cathode for rechargeable lithium-iodine batteries. J. Mater. Sci. Mater. Electron. 2018, 29, 11540–11545.

    Article  CAS  Google Scholar 

  29. Wang, H. F.; Zhang, G. M.; Ke, L. L.; Liu, B. D.; Zhang, S.; Deng, C. Understanding the effects of 3D porous architectures on promoting lithium or sodium intercalation in iodine/C cathodes synthesized via a biochemistry-enabled strategy. Nanoscale 2017, 9, 9365–9375.

    Article  CAS  Google Scholar 

  30. Guo, Y. M.; Jiang, Y. L.; Zhang, Q.; Wan, D. Y.; Huang, C. Directional LiFePO4 cathode structure by freeze tape casting to improve lithium ion diffusion kinetics. J. Power Sources 2021, 506, 230052.

    Article  CAS  Google Scholar 

  31. Zhao, J.; Shi, Q. L.; Xiang, Y. J.; Xia, Y. Y. Preparation of LiTi2O4 as a lithium-ion battery anode by a carbon-thermal reduction method. Int. J. Electrochem. Sci. 2018, 13, 1921–1930.

    Article  CAS  Google Scholar 

  32. Chen, R. S.; Nolan, A. M.; Lu, J. Z.; Wang, J. Y.; Yu, X. Q.; Mo, Y. F.; Chen, L. Q.; Huang, X. J.; Li, H. The thermal stability of lithium solid electrolytes with metallic lithium. Joule 2020, 4, 812–821.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Research reported in this publication is supported by Zhengzhou University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qianzheng Jin, Hui Wu or Yang Jin.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, B., Wang, P., Xu, J. et al. A garnet-electrolyte based molten Li-I2 battery with high performance. Nano Res. 15, 4076–4082 (2022). https://doi.org/10.1007/s12274-021-4010-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-4010-y

Keywords

Navigation