Skip to main content
Log in

Structure engineering of PtCu3/C catalyst from disordered to ordered intermetallic compound with heat-treatment for the methanol electrooxidation reaction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Platinum based alloys are hereinto the mostly used methanol oxidation catalysts. However, there are limited ways to improve the methanol oxidation reaction (MOR) performance of catalysts in terms of both activity and stability. Herein we developed a simple heat-treatment method to synthesize PtCu3/C intermetallic compound catalyst with lattice compression. The as-prepared PtCu3/C-1000 exhibited high specific activity of 3.23 mA·cm−1 and mass activity of 1,200 mA·mgPt−1, which is much higher than the PtCu3/C-untreated and commercial Pt/C catalysts, respectively. The XAS and DFT results shows the high activity of the catalyst towards MOR comes from the tightening of the Pt-M bond, which leads to the decrease of Fermi energy level and the make it difficulty in adsorbing carbon intermediates, thus releasing more active sites to promote the improvement of MOR performance. Moreover, the PtCu3/C-1000 shows better stability which is due to the surface-rich Pt prevents Cu from dissolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xia, B. Y.; Wu, H. B.; Wang, X.; Lou, X. W. One-pot synthesis of cubic PtCu3 nanocages with enhanced electrocatalytic activity for the methanol oxidation reaction. J. Am. Chem. Soc. 2012, 134, 13934–13937.

    Article  CAS  Google Scholar 

  2. Jiang, B.; Li, C. L.; Malgras, V.; Imura, M.; Tominaka, S.; Yamauchi, Y. Mesoporous Pt nanospheres with designed pore surface as highly active electrocatalyst. Chem. Sci. 2016, 7, 1575–1581.

    Article  CAS  Google Scholar 

  3. Lu, S. L.; Eid, K.; Ge, D. H.; Guo, J.; Wang, L.; Wang, H. J; Gu, H. W. One-pot synthesis of PtRu nanodendrites as efficient catalysts for methanol oxidation reaction. Nanoscale 2017, 9, 1033–1039.

    Article  CAS  Google Scholar 

  4. Liu, F. F.; Dang, D.; Tian, X. L. Platinum-decorated three dimensional titanium copper nitride architectures with durable methanol oxidation reaction activity. Int. J. Hydrogen Energy 2019, 44, 8415–8424.

    Article  CAS  Google Scholar 

  5. Wittkopf, J. A.; Zheng, J.; Yan, Y. S. High-performance dealloyed PtCu/CuNW oxygen reduction reaction catalyst for proton exchange membrane fuel cells. ACS Catal. 2014, 4, 3145–3151.

    Article  CAS  Google Scholar 

  6. Chen, G. J.; Shan, H. Q.; Li, Y.; Bao, H. W.; Hu, T. W.; Zhang, L.; Liu, S.; Ma, F. Hollow PtCu nanoparticles encapsulated into a carbon shell via mild annealing of Cu metal-organic frameworks. J. Mater. Chem. A 2020, 8, 10337–10345.

    Article  CAS  Google Scholar 

  7. Huang, L.; Zhang, X. P.; Han, Y. J.; Wang, Q. Q.; Fang, Y. X.; Dong, S. J. High-index facets bounded platinum-lead concave nanocubes with enhanced electrocatalytic properties. Chem. Mater. 2017, 29, 4557–4562.

    Article  CAS  Google Scholar 

  8. Hunt, S. T.; Milina, M.; Alba-Rubio, A. C.; Hendon, C. H.; Dumesic, J. A.; Roman-Leshkov, Y. Self-assembly of noble metal monolayers on transition metal carbide nanoparticle catalysts. Science 2016, 352, 974–978.

    Article  CAS  Google Scholar 

  9. Li, Z. S.; Xu, S. H.; Shi, Y. D.; Zou, X. H.; Lin, S. Metal-semiconductor oxide (WO3@W) induces an efficient electro-photo synergistic catalysis for MOR and ORR. Chem. Eng. J. 2021, 414, 128814.

    Article  CAS  Google Scholar 

  10. Wang, H. F.; Zhang, K. F.; Qiu, J.; Wu, J.; Shao, J. W.; Wang, H. J.; Zhang, Y. J.; Han, J.; Zhang, Y.; Yan, L. F. Ternary PtFeCo alloys on graphene with high electrocatalytic activities for methanol oxidation. Nanoscale 2020, 12, 9824–9832.

    Article  CAS  Google Scholar 

  11. Yang, Y.; Guo, Y. F.; Fu, C.; Zhang, R. H.; Zhan, W.; Wang, P.; Zhang, X.; Wang, Q.; Zhou, X. W. In-situ loading synthesis of graphene supported PtCu nanocube and its high activity and stability for methanol oxidation reaction. J. Colloid Interface Sci. 2021, 595, 107–117.

    Article  CAS  Google Scholar 

  12. Wang, Y. X.; Zhou, H. J.; Sun, P. C.; Chen, T. H. Exceptional methanol electro-oxidation activity by bimetallic concave and dendritic Pt-Cu nanocrystals catalysts. J. Power Sources 2014, 245, 663–670.

    Article  CAS  Google Scholar 

  13. Gatalo, M.; Ruiz-Zepeda, F.; Hodnik, N.; Dražić, G.; Bele, M.; Gaberšček, M. Insights into thermal annealing of highly-active PtCu3/C Oxygen Reduction Reaction electrocatalyst: An in-situ heating transmission Electron microscopy study. Nano Energy 2019, 63, 103892.

    Article  CAS  Google Scholar 

  14. Hodnik, N.; Jeyabharathi, C.; Meier, J. C.; Kostka, A.; Phani, K. L.; Rečnik, A.; Bele, M.; Hočevar, S.; Gaberšček, M.; Mayrhofer, K. J. J. Effect of ordering of PtCu3 nanoparticle structure on the activity and stability for the oxygen reduction reaction. Phys. Chem. Chem. Phys. 2014, 16, 13610–13615.

    Article  CAS  Google Scholar 

  15. Yao, X. Z.; Wei, Y. P.; Wang, Z. X.; Gan, L. Revealing the role of surface composition on the particle mobility and coalescence of carbon-supported Pt alloy fuel cell catalysts by in situ heating (S)TEM. ACS Catal. 2020, 10, 7381–7388.

    Article  CAS  Google Scholar 

  16. Dai, L.; Mo, S. G.; Qin, Q.; Zhao, X. J.; Zheng, N. F. Carbon monoxide-assisted synthesis of ultrathin PtCu3 alloy wavy nanowires and their enhanced electrocatalysis. Small 2016, 12, 1572–1577.

    Article  CAS  Google Scholar 

  17. Wigmans, T.; Hoogland, A.; Tromp, P.; Moulijn, J. A. The influence of potassium carbonate on surface area development and reactivity during gasification of activated carbon by carbon dioxide. Carbon 1983, 21, 13–22.

    Article  CAS  Google Scholar 

  18. Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2021, in press, DOI: https://doi.org/10.1007/s12274-021-3794-0.

  19. Wang, Y.; Wang, D. S.; Li, Y. D. A fundamental comprehension and recent progress in advanced Pt-based ORR nanocatalysts. SmartMat 2021, 2, 56–75.

    Article  CAS  Google Scholar 

  20. Chen, L. G.; Liang, X.; Li, X. T.; Pei, J. J.; Lin, H.; Jia, D. Z.; Chen, W. X.; Wang, D. S.; Li, Y. D. Promoting electrocatalytic methanol oxidation of platinum nanoparticles by cerium modification. Nano Energy 2020, 73, 104784.

    Article  CAS  Google Scholar 

  21. Mukerjee, S.; Srinivasan, S.; Soriaga, M. P.; McBreen, J. Role of structural and electronic properties of Pt and Pt alloys on electrocatalysis of oxygen reduction: An in situ XANES and EXAFS investigation. J. Electrochem. Soc. 1995, 142, 1409–1422.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51872209 and 51972239), the Key programs for Science and Technology Innovation of Wenzhou (No. 2018ZG005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chenliang Su or Huile Jin.

Electronic supplementary material

12274_2021_3993_MOESM1_ESM.pdf

Structure engineering of PtCu3/C catalyst from disordered to ordered intermetallic compound with heat-treatment for the methanol electrooxidation reaction

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, Z., Li, J., Wang, S. et al. Structure engineering of PtCu3/C catalyst from disordered to ordered intermetallic compound with heat-treatment for the methanol electrooxidation reaction. Nano Res. 15, 3866–3871 (2022). https://doi.org/10.1007/s12274-021-3993-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3993-8

Keywords

Navigation