Skip to main content
Log in

CO2 reduction with coin catalyst

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Most organic commodity chemicals are derived from fossil carbon resources. The dependency is so immense that it is difficult to compensate for the accompanying carbon footprint with current technology and chemical infrastructure. To mitigate the future fossil fuel usage, it is crucial to explore alternative chemical pathways, which are both sustainable and suitable for large-scale productions. Here we demonstrate a closed-loop carbon-neutral chemical route, using standard coin catalyst, to produce high concentrated formate and formic acid. The catalyst’s Faradaic efficiency (FE) of formate is ∼ 95.3% with great durability. The chemicals are not only synthesized but also purified and utilized in zero-carbon scenarios. We successfully harvested 45% formate salt and 86.2% formic acid, for applications like anti-freezing reagent and green liquid fuel to power the fuel-cell vehicles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mora Rollo, A.; Rollo, A.; Mora, C. The tree-lined path to carbon neutrality. Nat. Rev. Earth Environ. 2020, 1, 332–332.

    Article  Google Scholar 

  2. Koh, L. P.; Zeng, Y. W.; Sarira, T. V.; Siman, K. Carbon prospecting in tropical forests for climate change mitigation. Nat. Commun. 2021, 12, 1271.

    Article  CAS  Google Scholar 

  3. Honegger, M.; Michaelowa, A.; Roy, J. Potential implications of carbon dioxide removal for the sustainable development goals. Climate Policy 2021, 21, 678–698.

    Article  Google Scholar 

  4. Zeyringer, M.; Price, J.; Fais, B.; Li, P. H.; Sharp, E. Designing low-carbon power systems for great Britain in 2050 that are robust to the spatiotemporal and inter-annual variability of weather. Nat. Energy 2018, 3, 395–403.

    Article  CAS  Google Scholar 

  5. Mallapaty, S. How China could be carbon neutral by mid-century. Nature 2020, 586, 482–483.

    Article  CAS  Google Scholar 

  6. Keyßer, L. T.; Lenzen, M. 1.5 °C degrowth scenarios suggest the need for new mitigation pathways. Nat. Commun. 2021, 12, 2676.

    Article  Google Scholar 

  7. Liu, C.; Colón, B. C.; Ziesack, M.; Silver, P. A.; Nocera, D. G. Water splitting-biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis. Science 2016, 352, 1210–1213.

    Article  CAS  Google Scholar 

  8. Price, J. S.; Grede, A. J.; Wang, B. M.; Lipski, M. V.; Fisher, B.; Lee, K. T.; He, J. W.; Brulo, G. S.; Ma, X. K.; Burroughs, S. et al. High-concentration planar microtracking photovoltaic system exceeding 30% efficiency. Nat. Energy 2017, 2, 17113.

    Article  Google Scholar 

  9. Williams, J. H.; DeBenedictis, A.; Ghanadan, R.; Mahone, A.; Moore, J.; Morrow III, W. R.; Price, S.; Torn, M. S. The technology path to deep greenhouse gas emissions cuts by 2050: The pivotal role of electricity. Science 2012, 335, 53–59.

    Article  CAS  Google Scholar 

  10. Bushuyev, O. S.; De Luna, P.; Dinh, C. T.; Tao, L.; Saur, G.; van de Lagemaat, J.; Kelley, S. O.; Sargent, E. H. What should we make with CO2 and how can we make it. Joule 2018, 2, 825–832.

    Article  CAS  Google Scholar 

  11. De Luna, P.; Hahn, C.; Higgins, D.; Jaffer, S. A.; Jaramillo, T. F.; Sargent, E. H. What would it take for renewably powered electrosynthesis to displace petrochemical processes. Science 2019, 364, eaav3506.

    Article  CAS  Google Scholar 

  12. Chu, S.; Cui, Y.; Liu, N. The path towards sustainable energy. Nat. Mater. 2017, 16, 16–22.

    Article  Google Scholar 

  13. Kuhl, K. P.; Cave, E. R.; Abram, D. N.; Jaramillo, T. F. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ. Sci. 2012, 5, 7050–7059.

    Article  CAS  Google Scholar 

  14. Lei, Q.; Zhu, H.; Song, K. P.; Wei, N. N.; Liu, L. M.; Zhang, D. L.; Yin, J.; Dong, X. L.; Yao, K. X.; Wang, N. et al. Investigating the origin of enhanced C2+ selectivity in oxide-/hydroxide-derived copper electrodes during CO2 electroreduction. J. Am. Chem. Soc. 2020, 142, 4213–4222.

    Article  CAS  Google Scholar 

  15. Gao, D. F.; Arán-Ais, R. M.; Jeon, H. S.; Cuenya, B. R. Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products. Nat. Catal. 2019, 2, 198–210.

    Article  CAS  Google Scholar 

  16. Vasileff, A.; Xu, C. C.; Jiao, Y.; Zheng, Y.; Qiao, S. Z. Surface and interface engineering in copper-based bimetallic materials for selective CO2 electroreduction. Chem 2018, 4, 1809–1831.

    Article  CAS  Google Scholar 

  17. Zhu, P, Wang, H. T. Structural evolution of oxide-/hydroxide-derived copper electrodes accounts for the enhanced C2+ product selectivity during electrochemical CO2 reduction. Sci. Bull. 2020, 65, 977–979.

    Article  CAS  Google Scholar 

  18. Sholl, D. S.; Lively, R. P. Seven chemical separations to change the world. Nature 2016, 532, 435–437.

    Article  Google Scholar 

  19. Chen, K. J.; Madden, D. G.; Mukherjee, S.; Pham, T.; Forrest, K. A.; Kumar, A.; Space, B.; Kong, J.; Zhang, Q. Y.; Zaworotko, M. J. Synergistic sorbent separation for one-step ethylene purification from a four-component mixture. Science 2019, 366, 241–246.

    Article  CAS  Google Scholar 

  20. Tang, C.; Gong, P.; Xiao, T. S.; Sun, Z. Z. Direct electrosynthesis of 52% concentrated Co on silver’s twin boundary. Nat. Commun. 2021, 12, 2139.

    Article  CAS  Google Scholar 

  21. Xia, C.; Zhu, P.; Jiang, Q.; Pan, Y.; Liang, W. T.; Stavitski, E.; Alshareef, H. N.; Wang, H. T. Continuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using solid-electrolyte devices. Nat. Energy 2019, 4, 776–785.

    Article  CAS  Google Scholar 

  22. Ma, W. C.; Xie, S. J.; Liu, T. T.; Fan, Q. Y.; Ye, J. Y.; Sun, F. F.; Jiang, Z.; Zhang, Q. H.; Cheng, J.; Wang, Y. Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C-C coupling over fluorine-modified copper. Nat. Catal. 2020, 3, 478–487.

    Article  CAS  Google Scholar 

  23. Zhong, M.; Tran, K.; Min, Y. M.; Wang, C. H.; Wang, Z. Y.; Dinh, C. T.; De Luna, P.; Yu, Z. Q.; Rasouli, A. S.; Brodersen, P. et al. Accelerated discovery of CO2 electrocatalysts using active machine learning. Nature 2020, 581, 178–183.

    Article  CAS  Google Scholar 

  24. Wang, L.; Jin, P.; Duan, S.; She, H.; Huang, J.; Wang, Q. In-situ incorporation of Copper (II) porphyrin functionalized zirconium MOF and TiO2 for efficient photocatalytic CO2 reduction. Sci. Bull. 2019, 64, 926–933.

    Article  CAS  Google Scholar 

  25. Ye, K.; Cao, A.; Shao, J. Q.; Wang, G.; Si, R.; Ta, N.; Xiao, J. P.; Wang, G. X. Synergy effects on Sn-Cu alloy catalyst for efficient CO2 electroreduction to formate with high mass activity. Sci. Bull. 2020, 65, 711–719.

    Article  CAS  Google Scholar 

  26. Brunning, A. Periodic graphics: The compositions of U. S. coins. CEN ACS ORG 94, 28 (2016).

  27. Japan MINT [Online]. https://www.mint.go.jp/eng/operations/eng/eng_operations_coin_in-dex.html.

  28. The Metals in UK Coins [Online]. https://www.compoundchem.com/2014/03/27/the-metals-in-uk-coins/.

  29. Copper and the EURO [Online]. https://copperalliance.eu/about-copper/applications/coinage/.

  30. China 5 Jiao, 2016 [Online]. https://en.ucoin.net/coin/china-5-jiao-2016/?cid=61867.

  31. Cheng, Y. C.; Wu, C. J.; Chiang, R. C. Free energy of surface segregation in binary alloys. Phys. Rev. B 1985, 32, 4224–4227.

    Article  CAS  Google Scholar 

  32. Chang, X. X.; Wang, T.; Zhao, Z. J.; Yang, P. P.; Greeley, J.; Mu, R. T.; Zhang, G.; Gong, Z. M.; Luo, Z. B.; Chen, J. et al. Tuning Cu/Cu2O interfaces for the reduction of carbon dioxide to methanol in aqueous solutions. Angew. Chem., Int. Ed. 2018, 57, 15415–15419.

    Article  CAS  Google Scholar 

  33. Xiong, W.; Yang, J.; Shuai, L.; Hou, Y.; Qiu, M.; Li, X. Y.; Leung, M. K. H. CuSn alloy nanoparticles on nitrogen-doped graphene for electrocatalytic CO2 reduction. ChemElectroChem 2019, 6, 5951–5957.

    Article  CAS  Google Scholar 

  34. Ye, K.; Zhou, Z. W.; Shao, J. Q.; Lin, L.; Gao, D. F.; Ta, N.; Si, R.; Wang, G. X.; Bao, X. H. In situ reconstruction of a hierarchical Sn-Cu/SnOx core/shell catalyst for high-performance CO2 electroreduction. Angew. Chem., Int. Ed. 2020, 59, 4814–4821.

    Article  CAS  Google Scholar 

  35. Tang, C.; Shi, J. J.; Bai, X. W.; Hu, A. Q.; Xuan, N. N.; Yue, Y. W.; Ye, T.; Liu, B.; Li, P. X.; Zhuang, P. Y. et al. CO2 reduction on copper’s twin boundary. ACS Catal. 2020, 10, 2026–2032.

    Article  CAS  Google Scholar 

  36. Liu, H.; Su, Y. Q.; Kuang, S. Y.; Hensen, E. J. M.; Zhang, S.; Ma, X. B. Highly efficient CO2 electrolysis within a wide operation window using octahedral tin oxide single crystals. J. Mater. Chem. A 2021, 9, 7848–7856.

    Article  CAS  Google Scholar 

  37. Tan, D. X.; Zhang, J. L.; Cheng, X. Y.; Tan, X. N.; Shi, J. B.; Zhang, B. X.; Han, B. X.; Zheng, L. R.; Zhang, J. CuxNiy alloy nanoparticles embedded in a nitrogen-carbon network for efficient conversion of carbon dioxide. Chem. Sci. 2019, 10, 4491–4496.

    Article  CAS  Google Scholar 

  38. Feng, Y.; Li, Z.; Liu, H.; Dong, C. K.; Wang, J. Q.; Kulinich, S. A.; Du, X. W. Laser-prepared CuZn alloy catalyst for selective electrochemical reduction of CO2 to ethylene. Langmuir 2018, 34, 13544–13549.

    Article  CAS  Google Scholar 

  39. Kim, D.; Resasco, J.; Yu, Y.; Asiri, A. M.; Yang, P. D. Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles. Nat. Commun. 2014, 5, 4948.

    Article  CAS  Google Scholar 

  40. Pander III, J. E.; Baruch, M. F.; Bocarsly, A. B. Probing the mechanism of aqueous CO2 reduction on post-transition-metal electrodes using ATR-IR spectroelectrochemistry. ACS Catal. 2016, 6, 7824–7833.

    Article  CAS  Google Scholar 

  41. Hollingsworth, N.; Taylor, S. R. R.; Galante, M. T.; Jacquemin, J.; Longo, C.; Holt, K. B.; de Leeuw, N. H.; Hardacre, C. Reduction of carbon dioxide to formate at low overpotential using a superbase ionic liquid. Angew. Chem., Int. Ed. 2015, 127, 14370–14374.

    Article  Google Scholar 

  42. Li, F. W.; Chen, L.; Xue, M. Q.; Williams, T.; Zhang, Y.; MacFarlane, D. R.; Zhang, J. Towards a better Sn: Efficient electrocatalytic reduction of CO2 to formate by Sn/SnS2 derived from SnS2 nanosheets. Nano Energy 2017, 31, 270–277.

    Article  CAS  Google Scholar 

  43. Lei, F. C.; Liu, W.; Sun, Y. F.; Xu, J. Q.; Liu, K. T.; Liang, L.; Yao, T.; Pan, B. C.; Wei, S. Q.; Xie, Y. Metallic tin quantum sheets confined in graphene toward high-efficiency carbon dioxide electroreduction. Nat. Commun. 2016, 7, 12697.

    Article  CAS  Google Scholar 

  44. Gao, S.; Lin, Y.; Jiao, X. C.; Sun, Y. F.; Luo, Q. Q.; Zhang, W. H.; Li, D. Q.; Yang, J. L.; Xie, Y. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature 2016, 529, 68–71.

    Article  CAS  Google Scholar 

  45. Bulushev, D. A.; Ross, J. R. H. Towards sustainable production of formic acid. ChemSusChem 2018, 11, 821–836.

    Article  CAS  Google Scholar 

  46. Zhang, S.; Kang, P.; Meyer, T. J. Nanostructured tin catalysts for selective electrochemical reduction of carbon dioxide to formate. J. Am. Chem. Soc. 2014, 136, 1734–1737.

    Article  CAS  Google Scholar 

  47. Luc, W.; Collins, C.; Wang, S. W.; Xin, H. L.; He, K.; Kang, Y. J.; Jiao, F. Ag-Sn bimetallic catalyst with a core-shell structure for CO2 reduction. J. Am. Chem. Soc. 2017, 139, 1885–1893.

    Article  CAS  Google Scholar 

  48. Kumar, B.; Atla, V.; Brian, J. P.; Kumari, S.; Nguyen, T. Q.; Sunkara, M.; Spurgeon, J. M. Reduced SnO2 porous nanowires with a high density of grain boundaries as catalysts for efficient electrochemical CO2-into-hcooh conversion. Angew. Chem., Int. Ed. 2017, 56, 3645–3649.

    Article  CAS  Google Scholar 

  49. Zheng, X. L.; De Luna, P.; de Arquer, F. P. G.; Zhang, B.; Becknell, N.; Ross, M. B.; Li, Y. F.; Banis, M. N.; Li, Y. Z.; Liu, M. et al. Sulfur-modulated Tin sites enable highly selective electrochemical reduction of CO2 to formate. Joule 2017, 1, 794–805.

    Article  CAS  Google Scholar 

  50. He, J. F.; Dettelbach, K. E.; Huang, A. X.; Berlinguette, C. P. Brass and bronze as effective CO2 reduction electrocatalysts. Angew. Chem., Int. Ed. 2017, 129, 16806–16809.

    Article  Google Scholar 

  51. Strong, C. K.; Ye, Z. R.; Shi, X. M. Safety effects of winter weather: The state of knowledge and remaining challenges. Transp. Rev. 2010, 30, 677–699.

    Article  Google Scholar 

  52. Xu, C.; Kohler, T. A.; Lenton, T. M.; Svenning, J. C.; Scheffer, M. Future of the human climate niche. Proc. Natl. Acad. Sci. USA 2020, 117, 11350–11355.

    Article  CAS  Google Scholar 

  53. Hellstén, P.; Salminen, J.; Jørgensen, K.; Nystén, T. Use of potassium formate in road winter deicing can reduce groundwater deterioration. Environ. Sci. & Technol. 2005, 39, 5095–5100.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the financial support from the National Natural Science Foundation of China (Nos. 21771040 and 62074043), the National Key Research and Development Program of China (Nos. 2017YFA0207303 and 2016YFA0203900).

Author information

Authors and Affiliations

Authors

Contributions

T. X. and Z. S. conceived the project, analyzed the data and wrote the paper. T. X. prepared all the coin catalysts. T. X. and C. T. performed the CO2RR including the liquid products evaluation and analyzed the gas products. T. X. and H. Li. contributed to the solar salt, pure formic acid preparation, and characterizations of material. Z. S. supervised all research phases and revised the manuscript. All authors read and commented on the manuscript.

Corresponding author

Correspondence to Zhengzong Sun.

Ethics declarations

All authors declare no competing interests.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, T., Tang, C., Li, H. et al. CO2 reduction with coin catalyst. Nano Res. 15, 3859–3865 (2022). https://doi.org/10.1007/s12274-021-3990-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3990-y

Keywords

Navigation