Skip to main content
Log in

A humidity resistant and high performance triboelectric nanogenerator enabled by vortex-induced vibration for scavenging wind energy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Wind energy is a promising renewable energy source for a low-carbon society. This study is to develop a fully packaged vortex-induced vibration triboelectric nanogenerator (VIV-TENG) for scavenging wind energy. The VIV-TENG consists of a wind vane, internal power generation unit, an external frame, four springs, a square cylinder and a circular turntable. The internal power generation unit consists of polytetrafluoroethylene (PTFE) balls, a honeycomb frame and two copper electrodes. Different from most of the previous wind energy harvesting TENGs, the bouncing PTFE balls are fully packaged in the square cylinder. The distinct design separates the process of contact electrification from the external environment, and at the same time avoids the frictional wear of the ordinary wind energy harvesting TENGs. The corresponding VIV parameters are investigated to evaluate their influence on the vibration behaviors and the energy output. Resonant state of the VIV-TENG corresponds to the high output performance from the VIV-TENG. The distinct, robust structure ensures the full-packaged VIV-TENG can harvest wind energy from arbitrary directions and even in undesirable weather conditions. The study proposes a novel TENG configuration for harvesting wind energy and the VIV-TENG proves promising powering micro-electro-mechanical appliances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, J. L.; Zhao, G. F.; Zhang, M.; Zhang, Z. E. Efficient study of a coarse structure number on the bluff body during the harvesting of wind energy. Energy Sour. A 2018, 40, 1788–1797.

    Article  Google Scholar 

  2. Scrosati, B. Power sources for portable electronics and hybrid cars: Lithium batteries and fuel cells. Chem. Rec. 2005, 5, 286–297.

    Article  CAS  Google Scholar 

  3. Chen, Y.; Mu, X. J.; Wang, T.; Ren, W. W.; Yang, Y.; Wang, Z. L.; Sun, C. L.; Gu, A. Y. Flutter phenomenon in flow driven energy harvester-a unified theoretical model for “stiff” and “flexible” materials. Sci. Rep. 2016, 6, 35180.

    Article  CAS  Google Scholar 

  4. Jiang, D. Y.; Xu, M. Y.; Dong, M.; Guo, F.; Liu, X. H.; Chen, G. J.; Wang, Z. L. Water-solid triboelectric nanogenerators: An alternative means for harvesting hydropower. Renew. Sust. Energy Rev. 2019, 115, 109366.

    Article  Google Scholar 

  5. Maitra, A.; Bera, R.; Halder, L.; Bera, A.; Paria, S.; Karan, S. K.; Si, S. K.; De, A.; Ojha, S.; Khatua, B. B. Photovoltaic and triboelectrification empowered light-weight flexible self-charging asymmetric supercapacitor cell for self-powered multifunctional electronics. Renew. Sust. Energy Rev. 2021, 151, 111595.

    Article  CAS  Google Scholar 

  6. Wu, M.; Gao, Z.; Yao, K.; Hou, S.; Liu, Y.; Li, D.; He, J.; Huang, X.; Song, E.; Yu, J. et al. Thin, soft, skin-integrated foam-based triboelectric nanogenerators for tactile sensing and energy harvesting. Mater. Today Energy 2021, 20, 100657.

    Article  CAS  Google Scholar 

  7. Yang, Y. F.; Yu, X.; Meng, L. X.; Li, X.; Xu, Y. H.; Cheng, T. H.; Liu, S. M.; Wang, Z. L. Triboelectric nanogenerator with double rocker structure design for ultra-low-frequency wave full-stroke energy harvesting. Extreme Mech. Lett. 2021, 46, 101338.

    Article  Google Scholar 

  8. Liu, L.; Shi, Q. F.; Lee, C. A hybridized electromagnetic-triboelectric nanogenerator designed for scavenging biomechanical energy in human balance control. Nano Res. 2021, 14, 4227–4235.

    Article  Google Scholar 

  9. Pan, L.; Wang, J. Y.; Wang, P. H.; Gao, R. J.; Wang, Y. C.; Zhang, X. W.; Zou, J. J.; Wang, Z. L. Liquid-FEP-based U-tube triboelectric nanogenerator for harvesting water-wave energy. Nano Res. 2018, 11, 4062–4073.

    Article  CAS  Google Scholar 

  10. Quan, T.; Yang, Y. Fully enclosed hybrid electromagnetic-triboelectric nanogenerator to scavenge vibrational energy. Nano Res. 2016, 9, 2226–2233.

    Article  Google Scholar 

  11. Li, Y. H.; Zhang, Q.; Liu, Y.; Zhang, P. L.; Ren, C.; Zhang, H. D.; Cai, H.; Ding, G. F.; Yang, Z. Q.; Zhang, C. Regulation of nanocrystals structure for high-performance magnetic triboelectric nanogenerator. Nano Energy 2021, 89, 106390.

    Article  CAS  Google Scholar 

  12. Liu, S.; Li, P.; Yang, Y. R. On the design of an electromagnetic aeroelastic energy harvester from nonlinear flutter. Meccanica 2018, 53, 2807–2831.

    Article  Google Scholar 

  13. Datta, R.; Ranganathan, V. T. Direct power control of grid-connected wound rotor induction machine without rotor position sensors. IEEE Trans. Power Electr. 2002, 16, 390–399.

    Article  Google Scholar 

  14. Zheng, H. W.; Zi, Y. L.; He, X.; Guo, H. Y.; Lai, Y. C.; Wang, J.; Zhang, S. L.; Wu, C. S.; Cheng, G.; Wang, Z. L. Concurrent harvesting of ambient energy by hybrid nanogenerators for wearable self-powered systems and active remote sensing. ACS Appl. Mater. Interfaces 2018, 10, 14708–14715.

    Article  CAS  Google Scholar 

  15. Su, Y. J.; Xie, G. Z.; Xie, T.; Zhang, H. L.; Ye, Z. B.; Jing, Q. S.; Tai, H. L.; Du, X. S.; Jiang, Y. D. Wind energy harvesting and self-powered flow rate sensor enabled by contact electrification. J. Phys. D Appl. Phys. 2016, 49, 215601.

    Article  Google Scholar 

  16. Phan, H.; Shin, D. M.; Jeon, S. H.; Kang, T. Y.; Han, P.; Kim, G. H.; Kim, H. K.; Kim, K.; Hwang, Y. H.; Hong, S. W. Aerodynamic and aeroelastic flutters driven triboelectric nanogenerators for harvesting broadband airflow energy. Nano Energy 2017, 33, 476–484.

    Article  CAS  Google Scholar 

  17. Liu, L.; Guo, X. E.; Lee, C. Promoting smart cities into the 5G era with multi-field Internet of Things (IoT) applications powered with advanced mechanical energy harvesters. Nano Energy 2021, 88, 106304.

    Article  CAS  Google Scholar 

  18. Wang, Y.; Wang, J. Y.; Xiao, X.; Wang, S. Y.; Kien, P. T.; Dong, J. L.; Mi, J. C.; Pan, X. X.; Wang, H. F.; Xu, M. Y. Multi-functional wind barrier based on triboelectric nanogenerator for power generation, self-powered wind speed sensing and highly efficient windshield. Nano Energy 2020, 73, 104736.

    Article  CAS  Google Scholar 

  19. Sun, W. P.; Ding, Z.; Qin, Z. Y.; Chu, F. L.; Han, Q. K. Wind energy harvesting based on fluttering double-flag type triboelectric nanogenerators. Nano Energy 2020, 70, 104526.

    Article  CAS  Google Scholar 

  20. Xu, M. Y.; Wang, Y. C.; Zhang, S. L.; Ding, W. B.; Cheng, J.; He, X.; Zhang, P.; Wang, Z. J.; Pan, X. X.; Wang, Z. L. An aeroelastic flutter based triboelectric nanogenerator as a self-powered active wind speed sensor in harsh environment. Extreme Mech. Lett. 2017, 15, 122–129.

    Article  Google Scholar 

  21. Zhang, C. G.; Liu, Y. B.; Zhang, B. F.; Yang, O.; Yuan, W.; He, L. X.; Wei, X. L.; Wang, J.; Wang, Z. L. Harvesting wind energy by a triboelectric nanogenerator for an intelligent high-speed train system. ACS Energy Lett. 2021, 6, 1490–1499.

    Article  CAS  Google Scholar 

  22. Chen, P. F.; An, J.; Shu, S.; Cheng, R. W.; Nie, J. H.; Jiang, T.; Wang, Z. L. Super-durable, low-wear, and high-performance fur-brush triboelectric nanogenerator for wind and water energy harvesting for smart agriculture. Adv. Energy Mater. 2021, 11, 2003066.

    Article  CAS  Google Scholar 

  23. Shi, Q. F.; Zhang, Z. X.; He, T. Y. Y.; Sun, Z. D.; Wang, B. J.; Feng, Y. Q.; Shan, X. C.; Salam, B.; Lee, C. Deep learning enabled smart mats as a scalable floor monitoring system. Nat. Commun. 2020, 11, 4609.

    Article  CAS  Google Scholar 

  24. Bae, J.; Lee, J.; Kim, S.; Ha, J.; Lee, B. S.; Park, Y.; Choong, C.; Kim, J. B.; Wang, Z. L.; Kim, H. Y. et al. Flutter-driven triboelectrification for harvesting wind energy. Nat. Commun. 2014, 5, 4929.

    Article  CAS  Google Scholar 

  25. Zhang, Y.; Fu, S. C.; Chan, K. C.; Shin, D. M.; Chao, C. Y. H. Boosting power output of flutter-driven triboelectric nanogenerator by flexible flagpole. Nano Energy 2021, 88, 106284.

    Article  CAS  Google Scholar 

  26. Hu, J.; Pu, X. J.; Yang, H. M.; Zeng, Q. X.; Tang, Q.; Zhang, D. Z.; Hu, C. G.; Xi, Y. A flutter-effect-based triboelectric nanogenerator for breeze energy collection from arbitrary directions and self-powered wind speed sensor. Nano Res. 2019, 12, 3018–3023.

    Article  Google Scholar 

  27. Perez, M.; Boisseau, S.; Gasnier, P.; Willemin, J.; Reboud, J. L. An electret-based aeroelastic flutter energy harvester. Smart Mater. Struct. 2015, 24, 035004.

    Article  Google Scholar 

  28. Xie, Y. N.; Wang, S. H.; Lin, L.; Jing, Q. S.; Lin, Z. H.; Niu, S. M.; Wu, Z. Y.; Wang, Z. L. Rotary triboelectric nanogenerator based on a hybridized mechanism for harvesting wind energy. ACS Nano 2013, 7, 7119–7125.

    Article  CAS  Google Scholar 

  29. Wang, Y. Q.; Yu, X.; Yin, M. F.; Wang, J. L.; Gao, Q.; Yu, Y.; Cheng, T. H.; Wang, Z. L. Gravity triboelectric nanogenerator for the steady harvesting of natural wind energy. Nano Energy 2021, 82, 105740.

    Article  CAS  Google Scholar 

  30. Ren, X. H.; Fan, H. Q.; Wang, C.; Ma, J. W.; Li, H.; Zhang, M. C.; Lei, S. H.; Wang, W. J. Wind energy harvester based on coaxial rotatory freestanding triboelectric nanogenerators for self-powered water splitting. Nano Energy 2018, 50, 562–570.

    Article  CAS  Google Scholar 

  31. Yong, S.; Wang, J. Y.; Yang, L. J.; Wang, H. Q.; Luo, H.; Liao, R. J.; Wang, Z. L. Auto-switching self-powered system for efficient broad-band wind energy harvesting based on dual-rotation shaft triboelectric nanogenerator. Adv. Energy Mater. 2021, 11, 2101194.

    Article  CAS  Google Scholar 

  32. Williamson, C. H. K.; Govardhan, R. Vortex-induced vibrations. Annu. Rev. Fluid Mech. 2004, 36, 413–455.

    Article  Google Scholar 

  33. Blevins, R. D. Flow-Induced Vibrations; Van Nostrand Reinhold: New York, 1990; pp 377.

    Google Scholar 

  34. Xiao, X.; Zhang, X. Q.; Wang, S. Y.; Ouyang, H.; Chen, P. F.; Song, L. G.; Yuan, H. C.; Ji, Y. L.; Wang, P. H.; Li, Z. et al. Honeycomb structure inspired triboelectric nanogenerator for highly effective vibration energy harvesting and self-powered engine condition monitoring. Adv. Energy Mater. 2019, 9, 1902460.

    Article  CAS  Google Scholar 

  35. Du, T. L.; Zuo, X. S.; Dong, F. Y.; Li, S. Q.; Mtui, A. E.; Zou, Y. J.; Zhang, P.; Zhao, J. H.; Zhang, Y. W.; Sun, P. T. et al. A self-powered and highly accurate vibration sensor based on bouncing-ball triboelectric nanogenerator for intelligent ship machinery monitoring. Micromachines 2021, 12, 218.

    Article  Google Scholar 

  36. Shao, Z.; Zhou, T. M.; Zhu, H. J.; Zang, Z. P.; Zhao, W. H. Amplitude enhancement of flow-induced vibration for energy harnessing. In Proceedings of the 6th International Conference on Renewable Energy Technologies, Perth, Australia, 2020, pp 01005.

  37. Niu, S. M.; Liu, Y.; Chen, X. Y.; Wang, S. H.; Zhou, Y. S.; Lin, L.; Xie, Y. N.; Wang, Z. L. Theory of freestanding triboelectric-layer-based nanogenerators. Nano Energy 2015, 12, 760–774.

    Article  CAS  Google Scholar 

  38. Bernitsas, M. M.; Raghavan, K.; Ben-Simon, Y.; Garcia, E. M. H. VIVACE (Vortex induced vibration aquatic clean energy): A new concept in generation of clean and renewable energy from fluid flow. J. Offshore Mech. Arct. Eng. 2008, 130, 041101.

    Article  Google Scholar 

  39. Khalak, A.; Williamson, C. H. K. Motions, forces and mode transitions in vortex-induced vibrations at low mass-damping. J. Fluids Struct. 1999, 13, 813–851.

    Article  Google Scholar 

  40. Govardhan, R.; Williamson, C. H. K. Modes of vortex formation and frequency response of a freely vibrating cylinder. J. Fluid Mech. 2000, 420, 85–130.

    Article  CAS  Google Scholar 

  41. Feng, C. C. The measurement of vortex induced effects in flow past stationary and oscillating circular and d-section cylinders. Master Degree Thesis, University of British Columbia, Vancouver, 1968.

    Google Scholar 

  42. Sarpkaya, T. A critical review of the intrinsic nature of vortex-induced vibrations. J. Fluids Struct. 2004, 19, 389–447.

    Article  Google Scholar 

  43. Bernitsas, M. M.; Ben-Simon, Y.; Raghavan, K.; Garcia, E. M. H. The VIVACE converter: Model tests at high damping and reynolds number around 105. J. Offshore Mech. Arct. Eng. 2006, 131, 011102.

    Article  Google Scholar 

  44. Zhou, T.; Razali, S. F. M.; Hao, Z.; Cheng, L. On the study of vortex-induced vibration of a cylinder with helical strakes. J. Fluids Struct. 2011, 27, 903–917.

    Article  CAS  Google Scholar 

  45. Modir, A.; Goudarzi, N. Experimental investigation of Reynolds number and spring stiffness effects on vortex induced vibrations of a rigid circular cylinder. Eur. J. Mech. B Fluids 2019, 74, 34–40.

    Article  Google Scholar 

  46. McCarty, L. S.; Whitesides, G. M. Electrostatic charging due to separation of ions at interfaces: Contact electrification of ionic electrets. Angew. Chem., Int. Ed. 2008, 47, 2188–2207.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Nos. 51879022, 51979045, 52101400, 52101382, and 52101345), China Scholarship Council (CSC No. 202006570022), the Fundamental Research Funds for the Central Universities, China (Nos. 3132019330, 3132021340), Science and Technology Innovation Foundation of Dalian (No. 2021JJ12GX028), Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) (No. 311021013).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tongming Zhou, Chengkuo Lee or Minyi Xu.

Electronic supplementary material

12274_2021_3968_MOESM1_ESM.pdf

A humidity resistant and high performance triboelectric nanogenerator enabled by vortex-induced vibration for scavenging wind energy

Supplementary material, approximately 9.5 MB.

Supplementary material, approximately 8.29 MB.

Supplementary material, approximately 9.02 MB.

Supplementary material, approximately 9.34 MB.

Supplementary material, approximately 9.53 MB.

Supplementary material, approximately 9.89 MB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Chen, T., Sun, S. et al. A humidity resistant and high performance triboelectric nanogenerator enabled by vortex-induced vibration for scavenging wind energy. Nano Res. 15, 3246–3253 (2022). https://doi.org/10.1007/s12274-021-3968-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3968-9

Keywords

Navigation