Skip to main content
Log in

Coordination environments tune the activity of oxygen catalysis on single atom catalysts: A computational study

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Designing highly efficient bifunctional electrocatalysts for oxygen reduction and evolution reaction (ORR/OER) is extremely important for developing regenerative fuel cells and metal-air batteries. Single-atom catalysts (SACs) have gained considerable attention in recent years because of their maximum atom utilization efficiency and tunable coordination environments. Herein, through density functional theory (DFT) calculations, we systematically explored the ORR/OER performances of nitrogen-coordinated transition metal carbon materials (TM-Nx-C (TM = Mn, Fe, Co, Ni, Cu, Pd, and Pt; x = 3, 4)) through tailoring the coordination environment. Our results demonstrate that compared to conventional tetra-coordinated (TM-N4-C) catalysts, the asymmetric tri-coordinated (TM-N3-C) catalysts exhibit stronger adsorption capacity of catalytic intermediates. Among them, Ni-N3-C possesses optimal adsorption energy and the lowest overpotential of 0.29 and 0.28 V for ORR and OER, respectively, making it a highly efficient bifunctional catalyst for oxygen catalysis. Furthermore, we find this enhanced effect stems from the additional orbital interaction between newly uncoordinated d-orbitals and p-orbitals of oxygenated species, which is evidently testified via the change of d-band center and integral crystal orbital Hamilton population (ICOHP). This work not only provides a potential bifunctional oxygen catalyst, but also enriches the knowledge of coordination engineering for tailoring the activity of SACs, which may pave the way to design and discover more promising bifunctional electrocatalysts for oxygen catalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhou, Y. N.; Gao, G. P.; Chu, W.; Wang, L. W. Transition-metal single atoms embedded into defective BC3 as efficient electrocatalysts for oxygen evolution and reduction reactions. Nanoscale 2021, 13, 1331–1339.

    Article  CAS  Google Scholar 

  2. Wang, Y. W.; Qiu, W. J.; Song, E. H.; Gu, F.; Zheng, Z. H.; Zhao, X. L.; Zhao, Y. Q.; Liu, J. J.; Zhang, W. Q. Adsorption-energy-based activity descriptors for electrocatalysts in energy storage applications. Natl. Sci. Rev. 2018, 5, 327–341.

    Article  CAS  Google Scholar 

  3. Wang, J.; Kong, H.; Zhang, J. Y.; Hao, Y.; Shao, Z. P.; Ciucci, F. Carbon-based electrocatalysts for sustainable energy applications. Prog. Mater. Sci. 2021, 116, 100717.

    Article  CAS  Google Scholar 

  4. Huang, X. Q.; Zhao, Z. P.; Cao, L.; Chen, Y.; Zhu, E. B.; Lin, Z. Y.; Li, M. F.; Yan, A. M.; Zettl, A.; Wang, Y. M. et al. Highperformance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction. Science 2015, 348, 1230–1234.

    Article  CAS  Google Scholar 

  5. Frydendal, R.; Paoli, E. A.; Knudsen, B. P.; Wickman, B.; Malacrida, P.; Stephens, I. E. L.; Chorkendorff, I. Benchmarking the stability of oxygen evolution reaction catalysts: The importance of monitoring mass losses. ChemElectroChem 2014, 1, 2075–2081.

    Article  CAS  Google Scholar 

  6. Lee, Y.; Suntivich, J.; May, K. J.; Perry, E. E.; Shao-Horn, Y. Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J. Phys. Chem. Lett. 2012, 3, 399–404.

    Article  CAS  Google Scholar 

  7. Chen, J. Y.; Lim, B.; Lee, E. P.; Xia, Y. N. Shape-controlled synthesis of platinum nanocrystals for catalytic and electrocatalytic applications. Nano Today 2009, 4, 81–95.

    Article  Google Scholar 

  8. Zhao, Y. X.; Zhang, S.; Shi, R.; Waterhouse, G. I. N.; Tang, J. W.; Zhang, T. R. Two-dimensional photocatalyst design: A critical review of recent experimental and computational advances. Mater. Today 2020, 34, 78–91.

    Article  CAS  Google Scholar 

  9. Wang, B.; Wu, X. Y.; Zhang, X. Y.; Pang, G. G.; Li, S. M. Mo2C-embedded biomass-derived honeycomb-like nitrogen-doped carbon nanosheet/graphene aerogel films for highly efficient electrocatalytic hydrogen evolution. New J. Chem. 2020, 44, 1147–1156.

    Article  CAS  Google Scholar 

  10. Liu, Z.; Wang, J. Q.; Zhan, C. H.; Yu, J.; Cao, Y.; Tu, J. C.; Shi, C. S. Phosphide-oxide honeycomb-like heterostructure CoP@CoMoO4/CC for enhanced hydrogen evolution reaction in alkaline solution. J. Mater. Sci. Technol. 2020, 46, 177–184.

    Article  Google Scholar 

  11. Choi, W. S.; Jang, M. J.; Park, Y. S.; Lee, K. H.; Lee, J. Y.; Seo, M. H.; Choi, S. M. Three-dimensional honeycomb-like Cu0.81Co2.19O4 nanosheet arrays supported by Ni foam and their high efficiency as oxygen evolution electrodes. ACS Appl. Mater. Interface s 2018, 10, 38663–38668.

    Article  CAS  Google Scholar 

  12. Chen, Z. J.; Cao, G. X.; Gan, L. Y.; Dai, H.; Xu, N.; Zang, M. J.; Dai, H. B.; Wu, H.; Wang, P. Highly dispersed platinum on honeycomb-like NiO@Ni film as a synergistic electrocatalyst for the hydrogen evolution reaction. ACS Catal. 2018, 8, 8866–8872.

    Article  CAS  Google Scholar 

  13. Long, X.; Li, G. X.; Wang, Z. L.; Zhu, H. Y.; Zhang, T.; Xiao, S.; Guo, W. Y.; Yang, S. H. Metallic iron-nickel sulfide ultrathin nanosheets as a highly active electrocatalyst for hydrogen evolution reaction in acidic media. J. Am. Chem. Soc. 2015, 137, 11900–11903.

    Article  CAS  Google Scholar 

  14. Zitolo, A.; Goellner, V.; Armel, V.; Sougrati, M. T.; Mineva, T.; Stievano, L.; Fonda, E.; Jaouen, F. Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials. Nat. Mater. 2015, 14, 937–942.

    Article  CAS  Google Scholar 

  15. Chen, L. Y.; Zhang, L.; Chen, Z. J.; Liu, H. L.; Luque, R.; Li, Y. W. A covalent organic framework-based route to the in situ encapsulation of metal nanoparticles in N-rich hollow carbon spheres. Chem. Sci. 2016, 7, 6015–6020.

    Article  CAS  Google Scholar 

  16. Fan, L. L.; Liu, P. F.; Yan, X. C.; Gu, L.; Yang, Z. Z.; Yang, H. G.; Qiu, S. L.; Yao, X. D. Atomically isolated nickel species anchored on graphitized carbon for efficient hydrogen evolution electrocatalysis. Nat. Commun. 2016, 7, 10667.

    Article  CAS  Google Scholar 

  17. Cao, Y. J.; Chen, S.; Luo, Q. Q.; Yan, H.; Lin, Y.; Liu, W.; Cao, L. L.; Lu, J. L.; Yang, J. L.; Yao, T. et al. Atomic-level insight into optimizing the hydrogen evolution pathway over a Co1-N4 single-site photocatalyst. Angew. Chem., Int. Ed. 2017, 56, 12191–12196.

    Article  CAS  Google Scholar 

  18. Zhao, D.; Zhuang, Z. W.; Cao, X.; Zhang, C.; Peng, Q.; Chen, C.; Li, Y. D. Atomic site electrocatalysts for water splitting, oxygen reduction and selective oxidation. Chem. Soc. Re v. 2020, 49, 2215–2264.

    Article  CAS  Google Scholar 

  19. Chen, G. B.; Liu, P.; Liao, Z. Q.; Sun, F. F.; He, Y. H.; Zhong, H. X.; Zhang, T.; Zschech, E.; Chen, M. W.; Wu, G. et al. Zinc-mediated template synthesis of Fe-N-C electrocatalysts with densely accessible Fe-Nx active sites for efficient oxygen reduction. Adv. Mater. 2020, 32, 1907399.

    Article  CAS  Google Scholar 

  20. Wang, Y.; Mao, J.; Meng, X. G.; Yu, L.; Deng, D. H.; Bao, X. H. Catalysis with two-dimensional materials confining single atoms: Concept, design, and applications. Chem. Re v. 2019, 119, 1806–1854.

    Article  CAS  Google Scholar 

  21. Wang, J.; Jia, L. J.; Zhong, J.; Xiao, Q. B.; Wang, C.; Zang, K. T.; Liu, H. T.; Zheng, H. C.; Luo, J.; Yang, J. et al. Single-atom catalyst boosts electrochemical conversion reactions in batteries. E nergy Storage Mater. 2019, 18, 246–252.

    Article  Google Scholar 

  22. Hong, J. H.; Jin, C. H.; Yuan, J.; Zhang, Z. Atomic defects in two-dimensional materials: From single-atom spectroscopy to functionalities in opto-/electronics, nanomagnetism, and catalysis. A dv. Mater. 2017, 29, 1606434.

    Article  Google Scholar 

  23. Xie, X. Y.; Peng, L. S.; Yang, H. Z.; Waterhouse, G. I. N.; Shang, L.; Zhang, T. R. MIL-101-derived mesoporous carbon supporting highly exposed Fe single-atom sites as efficient oxygen reduction reaction catalysts. Adv. Mater. 2021, 33, 2101038.

    Article  CAS  Google Scholar 

  24. Zhao, L.; Zhang, Y.; Huang, L. B.; Liu, X. Z.; Zhang, Q. H.; He, C.; Wu, Z. Y.; Zhang, L. J.; Wu, J. P.; Yang, W. L. et al. Cascade anchoring strategy for general mass production of high-loading single-atomic metal-nitrogen catalysts. Nat. Commun. 2019, 10, 1278.

    Article  Google Scholar 

  25. Jiao, L.; Zhang, R.; Wan, G.; Yang, W. J.; Wan, X.; Zhou, H.; Shui, J. L.; Yu, S. H.; Jiang, H. L. Nanocasting SiO2 into metal-organic frameworks imparts dual protection to high-loading Fe single-atom electrocatalysts. Nat. Commun. 2020, 11, 2831.

    Article  CAS  Google Scholar 

  26. Chen, R. R.; Li, H. X.; Chu, D.; Wang, G. F. Unraveling oxygen reduction reaction mechanisms on carbon-supported Fe-phthalocyanine and Co-phthalocyanine catalysts in alkaline solutions. J. Phys. Chem. C 2009, 113, 20689–20697.

    Article  CAS  Google Scholar 

  27. Kattel, S.; Atanassov, P.; Kiefer, B. Catalytic activity of Co-Nx/C electrocatalysts for oxygen reduction reaction: A density functional theory study. Phys. Chem. Chem. Phys. 2013, 15, 148–153.

    Article  CAS  Google Scholar 

  28. Calle-Vallejo, F.; Martínez, J. I.; Rossmeisl, J. Density functional studies of functionalized graphitic materials with late transition metals for oxygen reduction reactions. Phys. Chem. Chem. Phy s. 2011, 13, 15639–15643.

    Article  CAS  Google Scholar 

  29. Beaumier, E. P.; Pearce, A. J.; See, X. Y.; Tonks, I. A. Modern applications of low-valent early transition metals in synthesis and catalysis. Nat. Rev. Chem. 2019, 3, 15–34.

    Article  Google Scholar 

  30. Burford, R. J.; Yeo, A.; Fryzuk, M. D. Dinitrogen activation by group 4 and group 5 metal complexes supported by phosphine-amido containing ligand manifolds. Coord. Chem. Rev. 2017, 334, 84–99.

    Article  CAS  Google Scholar 

  31. Zhang, X. Y.; Zhang, S.; Yang, Y.; Wang, L. G.; Mu, Z. J.; Zhu, H. S.; Zhu, X. Q.; Xing, H. H.; Xia, H. Y.; Huang, B. L. et al. A general method for transition metal single atoms anchored on honeycomblike nitrogen-doped carbon nanosheets. Adv. Mate r. 2020, 32, 1906905.

    Article  CAS  Google Scholar 

  32. Lin, Y. C.; Liu, P. Y.; Velasco, E.; Yao, G.; Tian, Z. Q.; Zhang, L. J.; Chen, L. Fabricating single-atom catalysts from chelating metal in open frameworks. Adv. Mater. 2019, 31, 1808193.

    Article  Google Scholar 

  33. Chen, Z. G.; Gong, W. B.; Liu, Z. B.; Cong, S.; Zheng, Z. H.; Wang, Z.; Zhang, W.; Ma, J. Y.; Yu, H. S.; Li, G. H. et al. Coordination-controlled single-atom tungsten as a non-3d-metal oxygen reduction reaction electrocatalyst with ultrahigh mass activity. Nano Energy 2019, 60, 394–403.

    Article  CAS  Google Scholar 

  34. Chen, Y. J.; Ji, S. F.; Zhao, S.; Chen, W. X.; Dong, J. C.; Cheong, W. C.; Shen, R. A.; Wen, X. D.; Zheng, L. R.; Rykov, A. I. et al. Enhanced oxygen reduction with single-atomic-site iron catalysts for a zinc-air battery and hydrogen-air fuel cell. Nat. Commun. 2018, 9, 5422.

    Article  CAS  Google Scholar 

  35. Gong, L. L.; Wang, X. W.; Zheng, T.; Liu, J.; Wang, J.; Yang, Y. C.; Zhang, J.; Han, X.; Zhang, L. P.; Xia, Z. H. Catalytic mechanism and design principle of coordinately unsaturated single metal atom-doped covalent triazine frameworks with high activity and selectivity for CO2 electroreduction. J. Mater. Chem. A 2021, 9, 3555–3566.

    Article  CAS  Google Scholar 

  36. Zeng, X. J.; Shui, J. L.; Liu, X. F.; Liu, Q. T.; Li, Y. C.; Shang, J. X.; Zheng, L. R.; Yu, R. H. Single-atom to single-atom grafting of Pt1 onto Fe-N4 center: Pt1@Fe-N-C multifunctional electrocatalyst with significantly enhanced properties. Adv. Energy Mate r. 2018, 8, 1701345.

    Article  Google Scholar 

  37. Yang, Z. K.; Chen, B. X.; Chen, W. X.; Qu, Y. T.; Zhou, F. Y.; Zhao, C. M.; Xu, Q.; Zhang, Q. H.; Duan, X. Z.; Wu, Y. Directly transforming copper (I) oxide bulk into isolated single-atom copper sites catalyst through gas-transport approach. Nat. Commun. 2019, 1 0, 3734.

    Article  Google Scholar 

  38. Zhang, Y.; Jiao, L.; Yang, W. J.; Xie, C. F.; Jiang, H. L. Rational fabrication of low-coordinate single-atom Ni electrocatalysts by MOFs for highly selective CO2 reduction. Angew. Chem., Int. E d. 2021, 60, 7607–7611.

    Article  CAS  Google Scholar 

  39. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  CAS  Google Scholar 

  40. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 5 0, 17953–17979.

    Article  Google Scholar 

  41. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

    Article  CAS  Google Scholar 

  42. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  CAS  Google Scholar 

  43. Liao, X. B.; Lu, R. H.; Xia, L. X.; Liu, Q.; Wang, H.; Zhao, K.; Wang, Z. Y.; Zhao, Y. Density functional theory for electrocatalysis. Energy Environ. Mater., in press, DOI: https://doi.org/10.1002/eem2.12204.

  44. Luo, S. J.; Zhao, Y.; Truhlar, D. G. Improved CO adsorption energies, site preferences, and surface formation energies from a meta-generalized gradient approximation exchange-correlation functional, M06-L. J. Phys. Chem. Lett. 2012, 3, 2975–2979.

    Article  CAS  Google Scholar 

  45. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 1 32, 154104.

    Article  Google Scholar 

  46. Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799.

    Article  CAS  Google Scholar 

  47. Tang, W.; Sanville, E.; Henkelman, G. A grid-based Bader analysis algorithm without lattice bias. J. Phys.: Condens. Matte r 2009, 21, 084204.

    CAS  Google Scholar 

  48. Maintz, S.; Deringer, V. L.; Tchougreeff, A. L.; Dronskowski, R. LOBSTER: A tool to extract chemical bonding from plane-wave based DFT. J. Comput. Chem. 2016, 37, 1030–1035.

    Article  CAS  Google Scholar 

  49. Deringer, V. L.; Tchougréeff, A. L.; Dronskowski, R. Crystal orbital Hamilton population (COHP) analysis as projected from plane-wave basis sets. J. Phys. Chem. A 2011, 115, 5461–5466.

    Article  CAS  Google Scholar 

  50. Mathew, K.; Sundararaman, R.; Letchworth-Weaver, K.; Arias, T. A.; Hennig, R. G. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. J. Chem. Phys. 2014, 140, 084106.

    Article  Google Scholar 

  51. Zhou, Y. N.; Gao, G. P.; Li, Y.; Chu, W.; Wang, L. W. Transition-metal single atoms in nitrogen-doped graphenes as efficient active centers for water splitting: A theoretical study. Phys. Chem. Chem. Phys. 2019, 21, 3024–3032.

    Article  CAS  Google Scholar 

  52. Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 1984, 81, 511–519.

    Article  Google Scholar 

  53. Niu, H.; Wang, X. T.; Shao, C.; Zhang, Z. F.; Guo, Y. Z. Computational screening single-atom catalysts supported on g-CN for N2 reduction: High activity and selectivity. ACS Sustainabl e Chem. Eng. 2020, 8, 13749–13758.

    Article  CAS  Google Scholar 

  54. Rossmeisl, J.; Logadottir, A.; Nørskov, J. K. Electrolysis of water on (oxidized) metal surfaces. Chem. Phys. 2005, 319, 178–184.

    Article  CAS  Google Scholar 

  55. Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.

    Article  Google Scholar 

  56. Niu, H.; Wan, X. H.; Wang, X. T.; Shao, C.; Robertson, J.; Zhang, Z. F.; Guo, Y. Z. Single-atom rhodium on defective g-C3N4: A promising bifunctional oxygen electrocatalyst. ACS Sustainabl e Chem. Eng. 2021, 9, 3590–3599.

    Article  CAS  Google Scholar 

  57. Xu, H. X.; Cheng, D. J.; Cao, D. P.; Zeng, X. C. A universal principle for a rational design of single-atom electrocatalysts. Nat. Catal. 2018, 1, 339–348.

    Article  CAS  Google Scholar 

  58. Impeng, S.; Junkaew, A.; Maitarad, P.; Kungwan, N.; Zhang, D. S.; Shi, L. Y.; Namuangruk, S. A MnN4 moiety embedded graphene as a magnetic gas sensor for CO detection: A first principle study. Appl. Surf. Sci. 2019, 473, 820–827.

    Article  CAS  Google Scholar 

  59. Zhang, X. L.; Yang, Z. X.; Lu, Z. S.; Wang, W. C. Bifunctional CoNx embedded graphene electrocatalysts for OER and ORR: A theoretical evaluation. Carbon 2018, 130, 112–119.

    Article  CAS  Google Scholar 

  60. Kattel, S.; Wang, G. F. Reaction pathway for oxygen reduction on FeN4 embedded graphene. J. Phys. Chem. Lett. 2014, 5, 452–456.

    Article  CAS  Google Scholar 

  61. Xue, Z.; Zhang, X. Y.; Qin, J. Q.; Liu, R. P. TMN4 complex embedded graphene as bifunctional electrocatalysts for high efficiency OER/ORR. J. Energy Chem. 2021, 55, 437–443.

    Article  Google Scholar 

  62. Deng, Q. M.; Han, J.; Zhao, J.; Chen, G. B.; Vegge, T.; Hansen, H. A. 1D metal-dithiolene wires as a new class of bi-functional oxygen reduction and evolution single-atom electrocatalysts. J. Catal. 2021, 3 93, 140–148.

    Article  CAS  Google Scholar 

  63. Yang, J. R.; Li, W. H.; Wang, D. S.; Li, Y. D. Electronic metal-support interaction of single-atom catalysts and applications in electrocatalysis. Adv. Mater. 2020, 32, 2003300.

    Article  CAS  Google Scholar 

  64. Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.

    Article  Google Scholar 

  65. Rossmeisl, J.; Qu, Z. W.; Zhu, H.; Kroes, G. J.; Nørskov, J. K. Electrolysis of water on oxide surfaces. J. Electroanal. Chem. 2007, 6 07, 83–89.

    Article  CAS  Google Scholar 

  66. Medford, A. J.; Vojvodic, A.; Hummelshøj, J. S.; Voss, J.; Abild-Pedersen, F.; Studt, F.; Bligaard, T.; Nilsson, A.; Nørskov, J. K. From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. J. Catal. 2015, 328, 36–42.

    Article  CAS  Google Scholar 

  67. Zhang, Z. H.; Qi, S. Y.; Song, X. H.; Wang, J.; Zhang, W. Q.; Zhao, M. W. Stable multifunctional single-atom catalysts adsorbed on pyrazine-modified graphyne. Appl. Surf. Sci. 2021, 553, 149464.

    Article  CAS  Google Scholar 

  68. Li, J.; Chen, S. G.; Yang, N.; Deng, M. M.; Ibraheem, S.; Deng, J. H.; Li, J.; Li, L.; Wei, Z. D. Ultrahigh-loading zinc single-atom catalyst for highly efficient oxygen reduction in both acidic and alkaline media. Angew. Chem., Int. Ed. 2019, 58, 7035–7039.

    Article  CAS  Google Scholar 

  69. Persson, K. A.; Waldwick, B.; Lazic, P.; Ceder, G. Prediction of solid-aqueous equilibria: Scheme to combine first-principles calculations of solids with experimental aqueous states. Phys. Rev. B 2012, 85, 235438.

    Article  Google Scholar 

  70. Mao, X.; Ling, C. Y.; Tang, C.; Yan, C.; Zhu, Z. H.; Du, A. J. Predicting a new class of metal-organic frameworks as efficient catalyst for bi-functional oxygen evolution/reduction reactions. J. Catal. 2018, 367, 206–211.

    Article  CAS  Google Scholar 

  71. Ling, C. Y.; Shi, L.; Ouyang, Y. X.; Zeng, X. C.; Wang, J. L. Nanosheet supported single-metal atom bifunctional catalyst for overall water splitting. Nano Lett. 2017, 17, 5133–5139.

    Article  CAS  Google Scholar 

  72. Fu, Z. Z.; Ling, C. Y.; Wang, J. L. A Ti3C2O2 supported single atom, trifunctional catalyst for electrochemical reactions. J. Mater. Chem. A 2020, 8, 7801–7807.

    Article  CAS  Google Scholar 

  73. Shang, H. S.; Zhou, X. Y.; Dong, J. C.; Li, A.; Zhao, X.; Liu, Q. H.; Lin, Y.; Pei, J. J.; Li, Z.; Jiang, Z. L. et al. Engineering unsymmetrically coordinated Cu-S1N3 single atom sites with enhanced oxygen reduction activity. Nat. Commun. 2020, 11, 3049.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the following funding agencies for supporting this work: Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory (No. XHT2020-003), the China Postdoctoral Science Foundation (No. 2021M692490), and the Fundamental Research Funds for the Central Universities (No. WUT:2020III029, 2020IVA100).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaobin Liao, Zhaoyang Wang or Yan Zhao.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, G., Lu, R., Liu, J. et al. Coordination environments tune the activity of oxygen catalysis on single atom catalysts: A computational study. Nano Res. 15, 3073–3081 (2022). https://doi.org/10.1007/s12274-021-3964-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3964-0

Keywords

Navigation