Skip to main content
Log in

Oxygen modified CoP2 supported palladium nanoparticles as highly efficient catalyst for hydrolysis of ammonia borane

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Ammonia borane (AB) is regarded as a promising chemical hydrogen-storage material due to its high hydrogen content, non-toxicity, and long-term stability under ambient temperature. However, constructing advanced catalysts to further promote the hydrogen production still remains a challenge for the hydrolysis of AB. Herein, we report a novel oxygen modified CoP2 (O-CoP2) material with dispersed palladium nanoparticles (Pd NPs) as a highly efficient and sustainable catalyst for AB hydrolysis. The modification of oxygen could optimize the catalytic synergy effect between CoP2 and Pd NPs, achieving enhanced catalytic activity with a turnover frequency (TOF) number of 532 min−1 and an activation energy (Ea) value of 16.79 kJ·mol−1. Meanwhile, reaction kinetic experiments prove that the activation of water is the rate-determining step (RDS). The water activation mechanism is revealed by quasi in-situ X-ray photoelectron spectroscopy (XPS) and in-situ X-ray absorption fine structure (XAFS) measurements. The activation of water leads to the production of -H and -OH groups, which are further adsorbed on the oxygen atoms in P-O bond and Pd atoms, respectively. In addition, density functional theory (DFT) calculations indicate that the introduced oxygen facilitates the adsorption and activation of water molecules. This novel modulation strategy successfully sheds new light on the development of advanced catalysts for hydrolysis of AB and beyond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Valentini, F.; Kozell, V.; Petrucci, C.; Marrocchi, A.; Gu, Y. L.; Gelman, D.; Vaccaro, L. Formic acid, a biomass-derived source of energy and hydrogen for biomass upgrading. Energy Environ. Sci. 2019, 12, 2646–2664.

    Article  CAS  Google Scholar 

  2. Hu, C. L.; Zhang, L.; Gong, J. L. Recent progress made in the mechanism comprehension and design of electrocatalysts for alkaline water splitting. Energy Environ. Sci. 2019, 12, 2620–2645.

    Article  CAS  Google Scholar 

  3. Yao, Q. L.; Lu, Z. H.; Yang, Y. W.; Chen, Y. Z.; Chen, X. S.; Jiang, H. L. Facile synthesis of graphene-supported Ni-CeOx nanocomposites as highly efficient catalysts for hydrolytic dehydrogenation of ammonia borane. Nano Res. 2018, 11, 4412–4422.

    Article  CAS  Google Scholar 

  4. Yao, Q. L.; Yang, K.; Hong, X. L.; Chen, X. S.; Lu, Z. H. Basepromoted hydrolytic dehydrogenation of ammonia borane catalyzed by noble-metal-free nanoparticles. Catal. Sci. Technol. 2018, 8, 870–877.

    Article  CAS  Google Scholar 

  5. Cui, L.; Xu, Y. H.; Niu, L.; Yang, W. R.; Liu, J. Q. Monolithically integrated CoP nanowire array: An on/off switch for effective on-demand hydrogen generation via hydrolysis of NaBH4 and NH3BH3. Nano Res. 2017, 10, 595–604.

    Article  CAS  Google Scholar 

  6. Zhu, Y. Y.; Ouyang, L. Z.; Zhong, H.; Liu, J. W.; Wang, H.; Shao, H. Y.; Huang, Z. G.; Zhu, M. Closing the loop for hydrogen storage: Facile regeneration of NaBH4 from its hydrolytic product. Angew. Chem., Int. Ed. 2020, 59, 8623–8629.

    Article  CAS  Google Scholar 

  7. Hu, X. P.; Liu, T.; Zhang, X. L.; Tian, J. Nitrogen-functionalized carbon nanotube-supported bimetallic PtNi nanoparticles for hydrogen generation from hydrous hydrazine. Chem. Commun. 2021, 57, 8324–8327.

    Article  CAS  Google Scholar 

  8. Wang, K.; Yao, Q. L.; Qing, S. J.; Lu, Z. H. La(OH)3 nanosheet-supported CoPt nanoparticles: A highly efficient and magnetically recyclable catalyst for hydrogen production from hydrazine in aqueous solution. J. Mater. Chem. A 2019, 7, 9903–9911.

    Article  CAS  Google Scholar 

  9. Zhong, S.; Tsumori, N.; Kitta, M.; Xu, Q. Immobilizing palladium nanoparticles on boron-oxygen-functionalized carbon nanospheres towards efficient hydrogen generation from formic acid. Nano Res. 2019, 12, 2966–2970.

    Article  CAS  Google Scholar 

  10. Han, L.; Zhang, L. J.; Wu, H.; Zu, H. L.; Cui, P. X.; Guo, J. S.; Guo, R. H.; Ye, J.; Zhu, J. F.; Zheng, X. S. et al. Anchoring Pt single atoms on Te nanowires for plasmon-enhanced dehydrogenation of formic acid at room temperature. Adv. Sci. 2019, 6, 1900006.

    Article  Google Scholar 

  11. Akbayrak, S.; Özkar, S. Ammonia borane as hydrogen storage materials. Int. J. Hydrogen Energy 2018, 43, 18592–18606.

    Article  CAS  Google Scholar 

  12. Mboyi, C. D.; Poinsot, D.; Roger, J.; Fajerwerg, K.; Kahn, M. L.; Hierso, J. C. The hydrogen-storage challenge: Nanoparticles for metal-catalyzed ammonia borane dehydrogenation. Small, in press, https://doi.org/10.1002/smll.202102759.

  13. Chen, W. Y.; Ji, J.; Duan, X. Z.; Qian, G.; Li, P.; Zhou, X. G.; Chen, D.; Yuan, W. K. Unique reactivity in Pt/CNT catalyzed hydrolytic dehydrogenation of ammonia borane. Chem. Commun. 2014, 50, 2142–2144.

    Article  CAS  Google Scholar 

  14. Aijaz, A.; Karkamkar, A.; Choi, Y. J.; Tsumori, N.; Rönnebro, E.; Autrey, T.; Shioyama, H.; Xu, Q. Immobilizing highly catalytically active Pt nanoparticles inside the pores of metal-organic framework: A double solvents approach. J. Am. Chem. Soc. 2012, 134, 13926–13929.

    Article  CAS  Google Scholar 

  15. Akbayrak, S.; Tonbul, Y.; Özkar, S. Ceria supported rhodium nanoparticles: Superb catalytic activity in hydrogen generation from the hydrolysis of ammonia borane. Appl. Catal. B: Environ. 2016, 198, 162–170.

    Article  CAS  Google Scholar 

  16. Yao, Q. L.; Lu, Z. H.; Jia, Y. S.; Chen, X. S.; Liu, X. In situ facile synthesis of Rh nanoparticles supported on carbon nanotubes as highly active catalysts for H2 generation from NH3BH3 hydrolysis. Int. J. Hydrogen Energy 2015, 40, 2207–2215.

    Article  CAS  Google Scholar 

  17. Dai, H. M.; Su, J.; Hu, K.; Luo, W.; Cheng, G. Z. Pd nanoparticles supported on MIL-101 as high-performance catalysts for catalytic hydrolysis of ammonia borane. Int. J. Hydrogen Energy 2014, 39, 4947–4953.

    Article  CAS  Google Scholar 

  18. Tonbul, Y.; Akbayrak, S.; Özkar, S. Palladium(0) nanoparticles supported on ceria: Highly active and reusable catalyst in hydrogen generation from the hydrolysis of ammonia borane. Int. J. Hydrogen Energy 2016, 41, 11154–11162.

    Article  CAS  Google Scholar 

  19. Zhou, Y. H.; Wang, S. Q.; Zhang, Z. Y.; Williams, N.; Cheng, Y.; Gu, J. Hollow nickel-cobalt layered double hydroxide supported palladium catalysts with superior hydrogen evolution activity for hydrolysis of ammonia borane. ChemCatChem 2018, 10, 3206–3213.

    Article  CAS  Google Scholar 

  20. Manna, J.; Akbayrak, S.; Özkar, S. Palladium(0) nanoparticles supported on polydopamine coated CoFe2O4 as highly active, magnetically isolable and reusable catalyst for hydrogen generation from the hydrolysis of ammonia borane. Appl. Catal. B: Environ. 2017, 208, 104–115.

    Article  CAS  Google Scholar 

  21. Wang, W.; Lu, Z. H.; Luo, Y.; Zou, A. H.; Yao, Q. L.; Chen, X. S. Mesoporous carbon nitride supported Pd and Pd-Ni nanoparticles as highly efficient catalyst for catalytic hydrolysis of NH3BH3. ChemCatChem 2018, 10, 1620–1626.

    Article  CAS  Google Scholar 

  22. Xu, Q.; Chandra, M. Catalytic activities of non-noble metals for hydrogen generation from aqueous ammonia-borane at room temperature. J. Power Sources 2006, 163, 364–370.

    Article  CAS  Google Scholar 

  23. Kalidindi, S. B.; Sanyal, U.; Jagirdar, B. R. Nanostructured Cu and Cu@Cu2O core shell catalysts for hydrogen generation from ammonia-borane. Phys. Chem. Chem. Phys. 2008, 10, 5870–5874.

    Article  CAS  Google Scholar 

  24. Li, Z.; He, T.; Liu, L.; Chen, W. D.; Zhang, M.; Wu, G. T.; Chen, P. Covalent triazine framework supported non-noble metal nanoparticles with superior activity for catalytic hydrolysis of ammonia borane: From mechanistic study to catalyst design. Chem. Sci. 2017, 8, 781–788.

    Article  CAS  Google Scholar 

  25. Wang, C. L.; Tuninetti, J.; Wang, Z.; Zhang, C.; Ciganda, R.; Salmon, L.; Moya, S.; Ruiz, J.; Astruc, D. Hydrolysis of ammonia-borane over Ni/ZIF-8 nanocatalyst: High efficiency, mechanism, and controlled hydrogen release. J. Am. Chem. Soc. 2017, 139, 11610–11615.

    Article  CAS  Google Scholar 

  26. Wang, L. B.; Li, H. L.; Zhang, W. B.; Zhao, X.; Qiu, J. X.; Li, A. W.; Zheng, X. S.; Hu, Z. P.; Si, R.; Zeng, J. Supported rhodium catalysts for ammonia-borane hydrolysis: Dependence of the catalytic activity on the highest occupied state of the single rhodium atoms. Angew. Chem., Int. Ed. 2017, 56, 4712–4718.

    Article  CAS  Google Scholar 

  27. Xie, H. P.; Lan, C.; Chen, B.; Wang, F. H.; Liu, T. Noble-metal-free catalyst with enhanced hydrogen evolution reaction activity based on granulated Co-doped Ni-Mo phosphide nanorod arrays. Nano Res. 2020, 13, 3321–3329.

    Article  CAS  Google Scholar 

  28. Read, C. G.; Callejas, J. F.; Holder, C. F.; Schaak, R. E. General strategy for the synthesis of transition metal phosphide films for electrocatalytic hydrogen and oxygen evolution. ACS Appl. Mater. Interfaces 2016, 8, 12798–12803.

    Article  CAS  Google Scholar 

  29. Wang, J. M.; Yang, W. R.; Liu, J. Q. CoP2 nanoparticles on reduced graphene oxide sheets as a super-efficient bifunctional electrocatalyst for full water splitting. J. Mater. Chem. A 2016, 4, 4686–4690.

    Article  CAS  Google Scholar 

  30. Cai, J. Y.; Song, Y.; Zang, Y. P.; Niu, S. W.; Wu, Y. S.; Xie, Y. F.; Zheng, X. S.; Liu, Y.; Lin, Y.; Liu, X. J. et al. N-induced lattice contraction generally boosts the hydrogen evolution catalysis of P-rich metal phosphides. Sci. Adv. 2020, 6, eaaw8113.

    Article  CAS  Google Scholar 

  31. Xu, K.; Ding, H.; Zhang, M. X.; Chen, M.; Hao, Z. K.; Zhang, L. D.; Wu, C. Z.; Xie, Y. Regulating water-reduction kinetics in cobalt phosphide for enhancing HER catalytic activity in alkaline solution. Adv. Mater. 2017, 29, 1606980.

    Article  Google Scholar 

  32. Chen, Z. Y.; Song, Y.; Cai, J. Y.; Zheng, X. S.; Han, D. D.; Wu, Y. S.; Zang, Y. P.; Niu, S. W.; Liu, Y.; Zhu, J. F. et al. Tailoring the d-band centers enables Co4N nanosheets to be highly active for hydrogen evolution catalysis. Angew. Chem., Int. Ed. 2018, 57, 5076–5080.

    Article  CAS  Google Scholar 

  33. Feng, J. T.; Wang, H. Y.; Evans, D. G.; Duan, X.; Li, D. Q. Catalytic hydrogenation of ethylanthraquinone over highly dispersed eggshell Pd/SiO2-Al2O3 spherical catalysts. Appl. Catal. A: Gen. 2010, 382, 240–245.

    Article  CAS  Google Scholar 

  34. Westaway, K. C. Determining transition state structure using kinetic isotope effects. J. Labelled Comp. Radiopharm. 2007, 50, 989–1005.

    Article  CAS  Google Scholar 

  35. Van Nguyen, Q.; Frisbie, C. D. Hopping conductance in molecular wires exhibits a large heavy-atom kinetic isotope effect. J. Am. Chem. Soc. 2021, 143, 2638–2643.

    Article  Google Scholar 

  36. Liu, Q.; Tian, J. Q.; Cui, W.; Jiang, P.; Cheng, N. Y.; Asiri, A. M.; Sun, X. P. Carbon nanotubes decorated with CoP nanocrystals: A highly active non-noble-metal nanohybrid electrocatalyst for hydrogen evolution. Angew. Chem., Int. Ed. 2014, 53, 6710–6714.

    Article  CAS  Google Scholar 

  37. Xiao, X. F.; He, C. T.; Zhao, S. L.; Li, J.; Lin, W. S.; Yuan, Z. K.; Zhang, Q.; Wang, S. Y.; Dai, L. M.; Yu, D. S. A general approach to cobalt-based homobimetallic phosphide ultrathin nanosheets for highly efficient oxygen evolution in alkaline media. Energy Environ. Sci. 2017, 10, 893–899.

    Article  CAS  Google Scholar 

  38. Wang, Y. F.; Zhang, C. B.; He, H. Insight into the role of Pd state on Pd-based catalysts in o-xylene oxidation at low temperature. ChemCatChem 2018, 10, 998–1004.

    Article  Google Scholar 

  39. Zhang, Q.; Xu, J.; Yan, D. P.; Li, S. D.; Lu, J.; Cao, X. Z.; Wang, B. Y. The in situ shape-controlled synthesis and structure-activity relationship of Pd nanocrystalcatalysts supported on layered double hydroxide. Catal. Sci. Technol. 2013, 3, 2016–2024.

    Article  CAS  Google Scholar 

  40. Wang, Y. Q.; Sherwood, P. M. A. Phosphorus pentoxide (P2O5) by XPS. Surf. Sci. Spectra 2002, 9, 159–165.

    Article  Google Scholar 

  41. Atuchin, V. V.; Kesler, V. G.; Pervukhina, N. V. Electronic and structural parameters of phosphorus-oxygen bonds in inorganic phosphate crystals. Surf. Rev. Lett. 2008, 15, 391–399.

    Article  CAS  Google Scholar 

  42. Li, J. C.; Li, M.; Li, J.; Wang, S.; Li, G. B.; Liu, X. Hydrodechlorination and deep hydrogenation on single-palladium-atom-based heterogeneous catalysts. Appl. Catal. B: Environ. 2021, 282, 119518.

    Article  CAS  Google Scholar 

  43. Peuckert M. XPS investigation of surface oxidation layers on a platinum electrode in alkaline solution. Electrochimica Acta 1984, 29, 1315–1320.

    Article  CAS  Google Scholar 

  44. Al-Azri, Z. H. N.; Jovic, V.; Chen, W. T.; Sun-Waterhouse, D.; Metson, J. B.; Waterhouse, G. I. N. Performance evaluation of Pd/TiO2 and Pt/TiO2 photocatalysts for hydrogen production from ethanol-water mixtures. Int. J. Nanotechnol. 2014, 11, 695–703.

    Article  CAS  Google Scholar 

  45. Feng, K.; Zhong, J.; Zhao, B. H.; Zhang, H.; Xu, L.; Sun, X. H.; Lee, S. T. CuxCo1−xO nanoparticles on graphene oxide as a synergistic catalyst for high-efficiency hydrolysis of ammonia-borane. Angew. Chem., Int. Ed. 2016, 55, 11950–11954.

    Article  CAS  Google Scholar 

  46. Pei, G. X.; Liu, X. Y.; Yang, X. F.; Zhang, L. L.; Wang, A. Q.; Li, L.; Wang, H.; Wang, X. D.; Zhang, T. Performance of Cu-alloyed Pd single-atom catalyst for semihydrogenation of acetylene under simulated front-end conditions. ACS Catal. 2017, 7, 1491–1500.

    Article  CAS  Google Scholar 

  47. Davis, R. J.; Landry, S. M.; Horsley, J. A.; Boudart, M. X-ray-absorption study of the interaction of hydrogen with clusters of supported palladium. Phys. Rev. B 1989, 39, 10580–10583.

    Article  CAS  Google Scholar 

  48. Jiang, L. Z.; Liu, K. L.; Hung, S. F.; Zhou, L. Y.; Qin, R. X.; Zhang, Q. H.; Liu, P. X.; Gu, L.; Chen, H. M.; Fu, G. et al. Facet engineering accelerates spillover hydrogenation on highly diluted metal nanocatalysts. Nat. Nanotechnol. 2020, 15, 848–853.

    Article  CAS  Google Scholar 

  49. Peng, C. Y.; Kang, L.; Cao, S.; Chen, Y.; Lin, Z. S.; Fu, W. F. Nanostructured Ni2P as a robust catalyst for the hydrolytic dehydrogenation of ammonia-borane. Angew. Chem., Int. Ed. 2015, 54, 15725–15729.

    Article  CAS  Google Scholar 

  50. Wang, Q.; Fu, F. Y.; Yang, S.; Moro, M. M.; De Los Angeles Ramirez, M.; Moya, S.; Salmon, L.; Ruiz, J.; Astruc, D. Dramatic synergy in CoPt nanocatalysts stabilized by “Click” dendrimers for evolution of hydrogen from hydrolysis of ammonia borane. ACS Catal. 2019, 9, 1110–1119.

    Article  CAS  Google Scholar 

  51. Wu, Y. S.; Liu, X. J.; Han, D. D.; Song, X. Y.; Shi, L.; Song, Y.; Niu, S. W.; Xie, Y. F.; Cai, J. Y.; Wu, S. Y. et al. Electron density modulation of NiCo2S4 nanowires by nitrogen incorporation for highly efficient hydrogen evolution catalysis. Nat. Commun. 2018, 9, 1425.

    Article  Google Scholar 

  52. Akbayrak, S.; Kaya, M.; Volkan, M.; Özkar, S. Palladium(0) nanoparticles supported on silica-coated cobalt ferrite: A highly active, magnetically isolable and reusable catalyst for hydrolytic dehydrogenation of ammonia borane. Appl. Catal. B: Environ. 2014, 147, 387–393.

    Article  CAS  Google Scholar 

  53. Wang, J.; Qin, Y. L.; Liu, X.; Zhang, X. B. In situ synthesis of magnetically recyclable graphene-supported Pd@Co core-shell nanoparticles as efficient catalysts for hydrolytic dehydrogenation of ammonia borane. J. Mater. Chem. 2012, 22, 12468–12470.

    Article  CAS  Google Scholar 

  54. Wang, Q.; Liu, Z. Q.; Wang, W.; Liu, D. M.; Shi, W. X.; He, J. J.; Shao, P. H.; Shi, R. S.; Cui, F. Y. Nanostructured palladium/polypyrrole composite paper for enhanced catalytic hydrogen generation from ammonia borane. Int. J. Hydrogen Energy 2016, 41, 8470–8478.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Jafu Chen and Dr. Yu Bai for help in structure and morphology characterization. The authors also appreciate the beamline BL14W1 in SSRF, BL10B, and BL11U in NSRL for synchrotron radiation measurements. The calculations were conducted on the supercomputing system in the Supercomputing Center of USTC. This work was financially supported by the National Key Research & Development Program of China (Nos. 2017YFA0700104, 2017YFA0403402, 2017YFA0403403, and 2019YFA0405601), the National Natural Science Foundation of China (Nos. 11875258, U1932213, U1932148, 21773222, 21872131, U1732272, U1832218, and U1932214), the Key Program of Research and Development of Hefei Science Center of Chinese Academy of Science (No. 2017HSC-KPRD001), the Fundamental Research Funds for the Central Universities (No. WK2060000016), Collaborative Innovation Program of Hefei Science Center, Chinese Academy of Science (No. 2019HSC-CIP009), Users with Excellence Program of Hefei Science Center, Chinese Academy of Science (Nos. 2018HSC-UE003 and 2019HSC-UE004), and the Youth Innovation Promotion Association, Chinese Academy of Science (No. 2020454).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xusheng Zheng or Junfa Zhu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Ye, J., Tu, Y. et al. Oxygen modified CoP2 supported palladium nanoparticles as highly efficient catalyst for hydrolysis of ammonia borane. Nano Res. 15, 3034–3041 (2022). https://doi.org/10.1007/s12274-021-3941-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3941-7

Keywords

Navigation