Skip to main content
Log in

Asymmetrical π back-donation of hetero-dicationic Mo4+-Mo6+ pairs for enhanced electrochemical nitrogen reduction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The breaking of nonpolar N≡N bond of dinitrogen is the biggest dilemma for electrocatalytic nitrogen reduction reaction (NRR) application, driving electron migration between catalysts and N≡N bond (termed “π back-donation” process) is crucial for attenuating interfacial energy barrier but still remains challenging. Herein, using density functional theory calculations, we revealed that constructing a unique hetero-dicationic Mo4+-Mo6+ pair could effectively activate N≡N bond with a lying-down chemisorption configuration by an asymmetrical “π back-donation” process. As a proof-of-concept demonstration, we synthesized MoO2@MoO3 heterostructure with double Mo sites (Mo4+-Mo6+), which are embedded in graphite, for electrochemical nitrogen reduction. Impressively, this hetero-dicationic Mo4+-Mo6+ pair catalysts display more excellent catalytic performance with a high NH3 yield (60.9 µg·h−1·mg−1) and Faradic efficiency (23.8%) as NRR catalysts under ambient conditions than pristine MoO2 and MoO3. Operando characterizations using synchrotron-based spectroscopic techniques identified the emergence of a key ⋆N2Hy intermediate on Mo sites during NRR, which indicates that the Mo sites are active sites and the NRR process tends to follow an associative mechanism. This novel type of hetero-dicationic catalyst has tremendous potential as a new class of transition metal-based catalysts with promising applications in electrocatalysis and catalysts for energy conversion and storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Suryanto, B. H. R.; Du, H. L.; Wang, D. B.; Chen, J.; Simonov, A. N.; MacFarlane, D. R. Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia. Nat. Catal. 2019, 2, 290–296.

    Article  CAS  Google Scholar 

  2. Ye, T. N.; Park, S. W.; Lu, Y. F.; Li, J. F.; Sasase, M.; Kitano, M.; Tada, T.; Hosono, H. Vacancy-enabled N2 activation for ammonia synthesis on an Ni-loaded catalyst. Nature 2020, 583, 391–395.

    Article  CAS  Google Scholar 

  3. Han, G. F.; Li, F.; Chen, Z. W.; Coppex, C.; Kim, S. J.; Noh, H. J.; Fu, Z. P.; Lu, Y. L.; Singh, C. V.; Siahrostami, S. et al. Mechanochemistry for ammonia synthesis under mild conditions. Nat. Nanotechnol. 2020, 16, 325–330.

    Article  Google Scholar 

  4. Licht, S.; Cui, B. C.; Wang, B. H.; Li, F. F.; Lau, J.; Liu, S. Z. Ammonia synthesis by N2 and steam electrolysis in molten hydroxide suspensions of nanoscale Fe2O3. Science 2014, 345, 637–640.

    Article  CAS  Google Scholar 

  5. Soloveichik, G. Electrochemical synthesis of ammonia as a potential alternative to the Haber-Bosch process. Nat. Catal. 2019, 2, 377–380.

    Article  CAS  Google Scholar 

  6. Gong, Y. T.; Wu, J. Z.; Kitano, M.; Wang, J. J.; Ye, T. N.; Li, J.; Kobayashi, Y.; Kishida, K.; Abe, H.; Niwa, Y. et al. Ternary intermetallic LaCoSi as a catalyst for N2 activation. Nat. Catal. 2018, 1, 178–185.

    Article  CAS  Google Scholar 

  7. Martín, A. J.; Shinagawa, T.; Pérez-Ramírez, J. Electrocatalytic reduction of nitrogen: From haber-bosch to ammonia artificial leaf. Chem 2019, 5, 263–283.

    Article  Google Scholar 

  8. Howard, J. B.; Rees, D. C. How many metals does it take to fix N2? A mechanistic overview of biological nitrogen fixation. Proc. Natl. Acad. Sci. USA 2006, 103, 17088–17093.

    Article  CAS  Google Scholar 

  9. Chalk, P. M.; He, J. Z.; Peoples, M. B.; Chen, D. L. 15N2 as a tracer of biological N2 fixation: A 75-year retrospective. Soil Biol. Biochem. 2017, 106, 36–50.

    Article  CAS  Google Scholar 

  10. Deng, J.; Iñiguez, J. A.; Liu, C. Electrocatalytic nitrogen reduction at low temperature. Joule 2018, 2, 846–856.

    Article  CAS  Google Scholar 

  11. Yu, X. M.; Han, P.; Wei, Z. X.; Huang, L. S.; Gu, Z. X.; Peng, S. J.; Ma, J. M.; Zheng, G. F. Boron-doped graphene for electrocatalytic N2 reduction. Joule 2018, 2, 1610–1622.

    Article  CAS  Google Scholar 

  12. Hu, X.; Sun, Y.; Guo, S.; Sun, J.; Fu, Y.; Chen, S.; Zhang, S.; Zhu, J. Identifying electrocatalytic activity and mechanism of Ce1/3NbO3 perovskite for nitrogen reduction to ammonia at ambient conditions. Appl. Catal. B. 2021, 280, 119419.

    Article  CAS  Google Scholar 

  13. Ma, Y. Y.; Yang, T.; Zou, H. Y.; Zang, W. J.; Kou, Z. K.; Mao, L.; Feng, Y. P.; Shen, L.; Pennycook, S. J.; Duan, L. L. et al. Synergizing mo single atoms and Mo2C nanoparticles on CNTs synchronizes selectivity and activity of electrocatalytic N2 reduction to ammonia. Adv. Mater. 2020, 32, 2002177.

    Article  CAS  Google Scholar 

  14. Cheng, H.; Ding, L. X.; Chen, G. F.; Zhang, L. L.; Xue, J.; Wang, H. H. Molybdenum carbide nanodots enable efficient electrocatalytic nitrogen fixation under ambient conditions. Adv. Mater. 2018, 30, 1803694.

    Article  Google Scholar 

  15. Yu, B.; Li, H.; White, J.; Donne, S.; Yi, J. B.; Xi, S. B.; Fu, Y.; Henkelman, G.; Yu, H.; Chen, Z. L. et al. Tuning the catalytic preference of ruthenium catalysts for nitrogen reduction by atomic dispersion. Adv. Funct. Mater. 2020, 30, 1905665.

    Article  CAS  Google Scholar 

  16. Geng, Z. G.; Liu, Y.; Kong, X. D.; Li, P.; Li, K.; Liu, Z. Y.; Du, J. J.; Shu, M.; Si, R.; Zeng, J. Achieving a record-high yield rate of 120.9 \(\mu {{\rm{g}}_{{\rm{N}}{{\rm{H}}_3}}} \cdot {\rm{m}}{{\rm{g}}_{{\rm{cat}}.}}^{ - 1} \cdot {{\rm{h}}^{ - 1}}\) for N2 electrochemical reduction over Ru single-atom catalysts. Adv. Mater. 2018, 30, 1803498.

    Article  Google Scholar 

  17. Liu, Y. T.; Chen, X. X.; Yu, J. Y.; Ding, B. Carbon-nanoplated CoS@TiO2 nanofibrous membrane: An interface-engineered heterojunction for high-efficiency electrocatalytic nitrogen reduction. Angew. Chem., Int. Ed. 2019, 58, 18903–18907.

    Article  CAS  Google Scholar 

  18. Hao, Y. C.; Guo, Y.; Chen, L. W.; Shu, M.; Wang, X. Y.; Bu, T. A.; Gao, W. Y.; Zhang, N.; Su, X.; Feng, X. et al. Promoting nitrogen electroreduction to ammonia with bismuth nanocrystals and potassium cations in water. Nat. Catal. 2019, 2, 448–456.

    Article  CAS  Google Scholar 

  19. Lin, Y. X.; Zhang, S. N.; Xue, Z. H.; Zhang, J. J.; Su, H.; Zhao, T. J.; Zhai, G. Y.; Li, X. H.; Antonietti, M.; Chen, J. S. Boosting selective nitrogen reduction to ammonia on electron-deficient copper nanoparticles. Nat. Commun. 2019, 10, 4380.

    Article  Google Scholar 

  20. Chen, G. F.; Yuan, Y. F.; Jiang, H. F.; Ren, S. Y.; Ding, L. X.; Ma, L.; Wu, T. P.; Lu, J.; Wang, H. H. Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper-molecular solid catalyst. Nat. Energy 2020, 5, 605–613.

    Article  CAS  Google Scholar 

  21. Wang, Y.; Wang, D. S.; Li, Y. D. Rational design of single-atom site electrocatalysts: From theoretical understandings to practical applications. Adv. Mater. 2021, 33, 2008151.

    Article  CAS  Google Scholar 

  22. Yang, X.; Sun, S.; Meng, L.; Li, K.; Mukherjee, S.; Chen, X.; Lv, J.; Liang, S.; Zang, H.-Y.; Yan, L.-K.; Wu, G. Molecular single iron site catalysts for electrochemical nitrogen fixation under ambient conditions. Appl. Catal. B. 2021, 285, 119794.

    Article  CAS  Google Scholar 

  23. Légaré, M. A.; Bélanger-Chabot, G.; Dewhurst, R. D.; Welz, E.; Krummenacher, I.; Engels, B.; Braunschweig, H. Nitrogen fixation and reduction at boron. Science 2018, 359, 896–900.

    Article  Google Scholar 

  24. Huang, L. S.; Gu, X. L.; Zheng, G. F. Tuning active sites of MXene for efficient electrocatalytic N2 fixation. Chem 2019, 5, 15–17.

    Article  CAS  Google Scholar 

  25. Zhao, J. X.; Chen, Z. F. Single Mo atom supported on defective boron nitride monolayer as an efficient electrocatalyst for nitrogen fixation: A computational study. J. Am. Chem. Soc. 2017, 139, 12480–12487.

    Article  CAS  Google Scholar 

  26. Cao, N.; Chen, Z.; Zang, K. T.; Xu, J.; Zhong, J.; Luo, J.; Xu, X.; Zheng, G. F. Doping strain induced Bi-Ti3+ pairs for efficient N2 activation and electrocatalytic fixation. Nat. Commun. 2019, 10, 2877.

    Article  Google Scholar 

  27. Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev. 1964, 136, B864–B871.

    Article  Google Scholar 

  28. Kohn, W.; Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133–A1138.

    Article  Google Scholar 

  29. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  CAS  Google Scholar 

  30. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

    Article  Google Scholar 

  31. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

    Article  CAS  Google Scholar 

  32. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  CAS  Google Scholar 

  33. Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465.

    Article  CAS  Google Scholar 

  34. Moellmann, J.; Grimme, S. DFT-D3 study of some molecular crystals. J. Phys. Chem. C 2014, 118, 7615–7621.

    Article  CAS  Google Scholar 

  35. Jauhiainen, J.; Kivimaki, A.; Aksela, S.; Sairanen, O. P.; Aksela, H. Auger and coster-kronig decay of the 3p hole states in krypton. J. Phys. B 1995, 28, 4091–4100.

    Article  CAS  Google Scholar 

  36. Ahn, E.; Lee, J.; Koh, Y. Y.; Lee, J.; Park, B. G.; Kim, J. Y.; Lee, I.; Lee, C. W.; Jeen, H. Low temperature nanoscale oxygen-ion intercalation into epitaxial MoO2 thin films. J. Phys. Chem. C 2017, 121, 3410–3415.

    Article  CAS  Google Scholar 

  37. Thakur, P.; Cezar, J. C.; Brookes, N. B.; Choudhary, R. J.; Prakash, R.; Phase, D. M.; Chae, K. H.; Kumar, R. Direct observation of oxygen induced room temperature ferromagnetism in MoO2 thin films by X-ray magnetic circular dichroism characterizations. Appl. Phys. Lett. 2009, 94, 062501.

    Article  Google Scholar 

  38. Frati, F.; Hunault, M. O. J. Y.; de Groot, F. M. F. Oxygen k-edge X-ray absorption spectra. Chem. Rev. 2020, 120, 4056–4110.

    Article  CAS  Google Scholar 

  39. Zandi, O.; Hamann, T. W. Determination of photoelectrochemical water oxidation intermediates on haematite electrode surfaces using operando infrared spectroscopy. Nat. Chem. 2016, 8, 778–783.

    Article  CAS  Google Scholar 

  40. Yao, Y.; Zhu, S. Q.; Wang, H. J.; Li, H.; Shao, M. H. A spectroscopic study on the nitrogen electrochemical reduction reaction on gold and platinum surfaces. J. Am. Chem. Soc. 2018, 140, 1496–1501.

    Article  CAS  Google Scholar 

  41. Mitri, E.; Barbieri, L.; Vaccari, L.; Luchinat, E. 15N isotopic labelling for in-cell protein studies by NMR spectroscopy and single-cell ir synchrotron radiation FTIR microscopy: A correlative study. Analyst 2018, 143, 1171–1181.

    Article  CAS  Google Scholar 

  42. Yamanari, T.; Kimura, Y.; Mizusawa, N.; Ishii, A.; Ono, T. A. Midto low-frequency fourier transform infrared spectra of s-state cycle for photosynthetic water oxidation in synechocystis sp. PCC 6803. Biochemistry 2004, 43, 7479–7490.

    Article  CAS  Google Scholar 

  43. Wang, F.; Liu, Y. P.; Zhang, H.; Chu, K. CuO/graphene nanocomposite for nitrogen reduction reaction. ChemCatChem 2019, 11, 1441–1447.

    Article  CAS  Google Scholar 

  44. Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.

    Article  Google Scholar 

  45. Tao, H. C.; Choi, C.; Ding, L. X.; Jiang, Z.; Han, Z. S.; Jia, M. W.; Fan, Q.; Gao, Y. N.; Wang, H. H.; Robertson, A. W. et al. Nitrogen fixation by Ru single-atom electrocatalytic reduction. Chem 2019, 5, 204–214.

    Article  CAS  Google Scholar 

  46. Zhang, L.; Ji, X. Q.; Ren, X.; Ma, Y. J.; Shi, X. F.; Tian, Z. Q.; Asiri, A. M.; Chen, L.; Tang, B.; Sun, X. P. Electrochemical ammonia synthesis via nitrogen reduction reaction on a MoS2 catalyst: Theoretical and experimental studies. Adv. Mater. 2018, 30, 1800191.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 11975234, 11775225, 12075243, and 12005227), the Users with Excellence Program of Hefei Science Center CAS (Nos. 2021HSC-UE002, 2020HSC-UE002, and 2019HSC-UE002), the Innovative Program of Development Foundation of Hefei Center for Physical Science and Technology (No. 2020HSC-CIP013), the Postdoctoral Science Foundation of China (Nos. 2019M662202, 2020M682041, and 2020TQ0316), the Fundamental Research Funds for the Central Universities (No. WK2310000103), The support from the Ministry of Science and Technology of China (No. 2017YFA0204904) is gratefully acknowledged. The numerical calculations in this paper have been done on the supercomputing system in the Supercomputing Center of University of Science and Technology of China. This work was partially carried out at the USTC Center for Micro and Nanoscale Research and Fabrication. The authors would like to thank BSRF, SSRF and NSRL for the synchrotron beamtime.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuan Kong, Wangsheng Chu or Wensheng Yan.

Additional information

Electronic Supplementary Material Asymmetrical π back-donation of hetero-dicationic Mo4+-Mo6+ pairs for enhanced electrochemical nitrogen reduction

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, H., Ji, Q., Wang, C. et al. Asymmetrical π back-donation of hetero-dicationic Mo4+-Mo6+ pairs for enhanced electrochemical nitrogen reduction. Nano Res. 15, 3010–3016 (2022). https://doi.org/10.1007/s12274-021-3934-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3934-6

Keywords

Navigation