Skip to main content
Log in

Flexible sodium-ion capacitors boosted by high electrochemically-reactive and structurally-stable Sb2S3 nanowire/Ti3C2Tx MXene film anodes

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The rapid development of portable, foldable, and wearable electronic devices requires flexible energy storage systems. Sodium-ion capacitors (SICs) combining the high energy of batteries and the high power of supercapacitors are promising solutions. However, the lack of flexible and durable electrode materials that allow fast and reversible Na+ storage hinders the development of flexible SICs. Herein, we report a high-capacity, free-standing and flexible Sb2S3/Ti3C2Tx composite film for fast and stable sodium storage. In this hybrid nano-architecture, the Sb2S3 nanowires uniformly anchored between Ti3C2Tx nanosheets not only act as sodium storage reservoirs but also pillar the two-dimensional (2D) Ti3C2Tx to form three-dimensional (3D) channels benefiting for electrolyte penetration. Meanwhile, the highly conductive Ti3C2Tx nanosheets provide rapid electron transport pathways, confine the volume expansion of Sb2S3 during sodiation, and restrain the dissolution of discharged sodium polysulfides through physical constraint and chemical absorption. Owing to the synergistic effects of the one-dimensional (1D) Sb2S3 nanowires and 2D MXenes, the resultant composite anodes exhibit outstanding rate performance (553 mAh·g−1 at 2 A·g−1) and cycle stability in sodium-ion batteries. Moreover, the flexible SICs using Sb2S3/Ti3C2Tx anodes and active carbon/reduced graphene oxide (AC/rGO) paper cathodes deliver a superior energy and power density in comparison with previously reported devices, as well as an excellent cycling performance with a high capacity retention of 82.78% after 5,000 cycles. This work sheds light on the design of next-generation low-cost, flexible and fast-charging energy storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gwon, H.; Kim, H. S.; Lee, K. U.; Seo, D. H.; Park, Y. C.; Lee, Y. S.; Ahn, B. T.; Kang, K. Flexible energy storage devices based on graphene paper. Energy Environ. Sci. 2011, 4, 1277–1283.

    CAS  Google Scholar 

  2. Wang, X. G.; Li, Q. C.; Zhang, L.; Hu, Z. L.; Yu, L. H.; Jiang, T.; Lu, C.; Yan, C. L.; Sun, J. Y.; Liu, Z. F. Caging Nb2O5 nanowires in PECVD-derived graphene capsules toward bendable sodium-ion hybrid supercapacitors. Adv. Mater. 2018, 30, 1800963.

    Google Scholar 

  3. Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845–854.

    CAS  Google Scholar 

  4. Anothumakkool, B.; Wiemers-Meyer, S.; Guyomard, D.; Winter, M.; Brousse, T.; Gaubicher, J. Cascade-type prelithiation approach for Li-ion capacitors. Adv. Energy Mater. 2019, 9, 1900078.

    Google Scholar 

  5. Chang, X. Q.; Huang, T. Y.; Yu, J. Y.; Li, J. B.; Wang, J.; Wei, Q. L. Pseudocapacitive anode materials toward high-power sodium-ion capacitors. Batt. Super. 2021, 4, 1567–1587.

    CAS  Google Scholar 

  6. Wei, Q. L.; DeBlock, R. H.; Butts, D. M.; Choi, C.; Dunn, B. Pseudocapacitive vanadium-based materials toward high-rate sodium-ion storage. Energy Environ. Mater. 2020, 3, 221–234.

    CAS  Google Scholar 

  7. Li, J. B.; Ding, Z. B.; Li, J. L.; Wang, C. Y.; Pan, L. K.; Wang, G. X. Synergistic coupling of NiS1.03 nanoparticle with S-doped reduced graphene oxide for enhanced lithium and sodium storage. Chem. Eng. J. 2021, 407, 127199.

    CAS  Google Scholar 

  8. Li, J. B.; Ding, Z. B.; Pan, L. K.; Li, J. L.; Wang, C. Y.; Wang, G. X. Facile self-templating synthesis of layered carbon with N, S dual doping for highly efficient sodium storage. Carbon 2021, 173, 31–40.

    CAS  Google Scholar 

  9. Jana, M.; Park, J. M.; Kota, M.; Shin, K. H.; Rana, H. H.; Nakhanivej, P.; Huang, J. Q.; Park, H. S. Surface redox-active organosulfur-tethered carbon nanotubes for high power and long cyclability of Na-organosulfur hybrid energy storage. ACS Energy Lett. 2021, 6, 280–289.

    CAS  Google Scholar 

  10. Hou, R. Z.; Gund, G. S.; Qi, K.; Nakhanivej, P.; Liu, H. F.; Li, F.; Xia, B. Y.; Park, H. S. Hybridization design of materials and devices for flexible electrochemical energy storage. Energy Storage Mater. 2019, 19, 212–241.

    Google Scholar 

  11. Ajuria, J.; Redondo, E.; Arnaiz, M.; Mysyk, R.; Rojo, T.; Goikolea, E. Lithium and sodium ion capacitors with high energy and power densities based on carbons from recycled olive pits. J. Power Sources 2017, 359, 17–26.

    CAS  Google Scholar 

  12. Aravindan, V.; Ulaganathan, M.; Madhavi, S. Research progress in Na-ion capacitors. J. Mater. Chem. A 2016, 4, 7538–7548.

    CAS  Google Scholar 

  13. Amin, K.; Meng, Q. H.; Ahmad, A.; Cheng, M.; Zhang, M.; Mao, L. J.; Lu, K.; Wei, Z. X. A carbonyl compound-based flexible cathode with superior rate performance and cyclic stability for flexible lithium-ion batteries. Adv. Mater. 2018, 30, 1703868.

    Google Scholar 

  14. Ahmad, S.; Copic, D.; George, C.; De Volder, M. Hierarchical assemblies of carbon nanotubes for ultraflexible Li-ion batteries. Adv. Mater. 2016, 28, 6705–6710.

    CAS  Google Scholar 

  15. Wang, C.; Wang, F. X.; Liu, Z. C.; Zhao, Y. J.; Liu, Y.; Yue, Q.; Zhu, H. W.; Deng, Y. H.; Wu, Y. P.; Zhao, D. Y. N-doped carbon hollow microspheres for metal-free quasi-solid-state full sodium-ion capacitors. Nano Energy 2017, 41, 674–680.

    CAS  Google Scholar 

  16. Zhu, Y. H.; Yang, X. Y.; Liu, T.; Zhang, X. B. Flexible 1D batteries: Recent progress and prospects. Adv. Mater. 2020, 32, 1901961.

    CAS  Google Scholar 

  17. Wu, Z. P.; Wang, Y. L.; Liu, X. B.; Lv, C.; Li, Y. S.; Wei, D.; Liu, Z. F. Carbon-nanomaterial-based flexible batteries for wearable electronics. Adv. Mater. 2019, 31, 1800716.

    Google Scholar 

  18. Que, L. F.; Yu, F. D.; Wang, Z. B.; Gu, D. M. Pseudocapacitance of TiO2−x/CNT anodes for high-performance quasi-solid-state Li-ion and Na-ion capacitors. Small 2018, 14, 1704508.

    Google Scholar 

  19. Zhao, Q. L.; Yang, D. F.; Zhang, C.; Liu, X. H.; Fan, X.; Whittaker, A. K.; Zhao, X. S. Tailored polyimide-graphene nanocomposite as negative electrode and reduced graphene oxide as positive electrode for flexible hybrid sodium-ion capacitors. ACS Appl. Mater. Interfaces 2018, 10, 43730–43739.

    CAS  Google Scholar 

  20. Yang, J.; Bao, W. Z.; Jaumaux, P.; Zhang, S. T.; Wang, C. Y.; Wang, G. X. MXene-based composites: Synthesis and applications in rechargeable batteries and supercapacitors. Adv. Mater. Interfaces 2019, 6, 1802004.

    Google Scholar 

  21. Wyatt, B. C.; Rosenkranz, A.; Anasori, B. 2D MXenes: Tunable mechanical and tribological properties. Adv. Mater. 2021, 33, 2007973.

    CAS  Google Scholar 

  22. Zhang, C. F. Interfacial assembly of two-dimensional MXenes. J. Energy Chem. 2021, 60, 417–434.

    CAS  Google Scholar 

  23. Zhao, S. Q.; Guo, Z. Q.; Yang, J.; Wang, C. Y.; Sun, B.; Wang, G. X. Nanoengineering of advanced carbon materials for sodium-ion batteries. Small 2021, 2007431.

  24. Dall’Agnese, Y.; Rozier, P.; Taberna, P. L.; Gogotsi, Y.; Simon, P. Capacitance of two-dimensional titanium carbide (MXene) and MXene/carbon nanotube composites in organic electrolytes. J. Power Sources 2016, 306, 510–515.

    Google Scholar 

  25. Ma, C.; Ma, M. G.; Si, C. L.; Ji, X. X.; Wan, P. B. Flexible MXene-based composites for wearable devices. Adv. Funct. Mater. 2021, 31, 2009524.

    CAS  Google Scholar 

  26. Zhang, H. N.; Ren, M. X.; Jiang, W.; Yao, J.; Pan, L. M.; Yang, J. Hierarchical Sb2S3@m-Ti3C2Tx composite anode with enhanced Na-ion storage properties. J. Alloys Compd. 2021, 887, 161318.

    CAS  Google Scholar 

  27. Ren, M. X.; Cao, D.; Jiang, W.; Su, K.; Pan, L. M.; Jiang, Y. H.; Yan, S. S.; Qiu, T.; Yang, M.; Yang, J. et al. Hierarchical composite of Sb2S3 decorated on highly crumpled Ti3C2Tx nanosheets for enhanced sodium storage properties. Electrochim. Acta 2021, 373, 137835.

    CAS  Google Scholar 

  28. He, F. Y.; Tang, C.; Zhu, G. J.; Liu, Y. D.; Du, A. J.; Zhang, Q. B.; Wu, M. H.; Zhang, H. J. Leaf-inspired design of mesoporous Sb2S3/N-doped Ti3C2Tx composite towards fast sodium storage. Sci. China Chem. 2021, 64, 964–973.

    CAS  Google Scholar 

  29. Wang, T. H.; Shen, D. Y.; Liu, H.; Chen, H. Y.; Liu, Q. H.; Lu, B. G. A Sb2S3 nanoflower/MXene composite as an anode for potassium-ion batteries. ACS Appl. Mater. Interfaces 2020, 12, 57907–57915.

    CAS  Google Scholar 

  30. Guo, X.; Xie, X. Q.; Choi, S.; Zhao, Y. F.; Liu, H.; Wang, C. Y.; Chang, S.; Wang, G. X. Sb2O3/MXene(Ti3C2Tx) hybrid anode materials with enhanced performance for sodium-ion batteries. J. Mater. Chem. A 2017, 5, 12445–12452.

    CAS  Google Scholar 

  31. Song, J. J.; Guo, X.; Zhang, J. Q.; Chen, Y.; Zhang, C. Y.; Luo, L. Q.; Wang, F. Y.; Wang, G. X. Rational design of free-standing 3D porous MXene/rGO hybrid aerogels as polysulfide reservoirs for high-energy lithium-sulfur batteries. J. Mater. Chem. A 2019, 7, 6507–6513.

    CAS  Google Scholar 

  32. Guo, X.; Zhang, J. Q.; Song, J. J.; Wu, W. J.; Liu, H.; Wang, G. X. MXene encapsulated titanium oxide nanospheres for ultra-stable and fast sodium storage. Energy Storage Mater. 2018, 14, 306–313.

    Google Scholar 

  33. Sun, N.; Guan, Z. R. X.; Zhu, Q. Z.; Anasori, B.; Gogotsi, Y.; Xu, B. Enhanced ionic accessibility of flexible MXene electrodes produced by natural sedimentation. Nano-Micro Lett. 2020, 12, 89.

    CAS  Google Scholar 

  34. Sarycheva, A.; Gogotsi, Y. Raman spectroscopy analysis of the structure and surface chemistry of Ti3C2Tx MXene. Chem. Mater. 2020, 32, 3480–3488.

    CAS  Google Scholar 

  35. Xiong, X. H.; Wang, G. H.; Lin, Y. W.; Wang, Y.; Ou, X.; Zheng, F. H.; Yang, C. H.; Wang, J. H.; Liu, M. L. Enhancing sodium ion battery performance by strongly binding nanostructured Sb2S3 on sulfur-doped graphene sheets. ACS Nano 2016, 10, 10953–10959.

    CAS  Google Scholar 

  36. Perera, S. D.; Mariano, R. G.; Vu, K.; Nour, N.; Seitz, O.; Chabal, Y.; Balkus, K. J.Jr. Hydrothermal synthesis of graphene-TiO2 nanotube composites with enhanced photocatalytic activity. ACS Catal. 2012, 2, 949–956.

    CAS  Google Scholar 

  37. Xie, X. Q.; Zhao, M. Q.; Anasori, B.; Maleski, K.; Ren, C. E.; Li, J. W.; Byles, B. W.; Pomerantseva, E.; Wang, G. X.; Gogotsi, Y. Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices. Nano Energy 2016, 26, 513–523.

    CAS  Google Scholar 

  38. Yao, S. S.; Cui, J.; Lu, Z. H.; Xu, Z. L.; Qin, L.; Huang, J. Q.; Sadighi, Z.; Ciucci, F.; Kim, J. K. Unveiling the unique phase transformation behavior and sodiation kinetics of 1D van der Waals Sb2S3 anodes for sodium ion batteries. Adv. Energy Mater. 2017, 7, 1602149.

    Google Scholar 

  39. Zhao, Y. B.; Manthiram, A. Amorphous Sb2S3 embedded in graphite: A high-rate, long-life anode material for sodium-ion batteries. Chem. Commun. 2015, 51, 13205–13208.

    CAS  Google Scholar 

  40. Dong, S. H.; Li, C. X.; Ge, X. L.; Li, Z. Q.; Miao, X. G.; Yin, L. W. ZnS-Sb2S3@C core-double shell polyhedron structure derived from metal-organic framework as anodes for high performance sodium ion batteries. ACS Nano 2017, 11, 6474–6482.

    CAS  Google Scholar 

  41. Ji, L. W.; Gu, M.; Shao, Y. Y.; Li, X. L.; Engelhard, M. H.; Arey, B. W.; Wang, W.; Nie, Z. M.; Xiao, J.; Wang, C. M. et al. Controlling SEI formation on SnSb-porous carbon nanofibers for improved Na ion storage. Adv. Mater. 2014, 26, 2901–2908.

    CAS  Google Scholar 

  42. Darwiche, A.; Marino, C.; Sougrati, M. T.; Fraisse, B.; Stievano, L.; Monconduit, L. Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: An unexpected electrochemical mechanism. J. Am. Chem. Soc. 2012, 134, 20805–20811.

    CAS  Google Scholar 

  43. Zhang, J.; Wang, D. W.; Lv, W.; Zhang, S. W.; Liang, Q. H.; Zheng, D. Q.; Kang, F. Y.; Yang, Q. H. Achieving superb sodium storage performance on carbon anodes through an ether-derived solid electrolyte interphase. Energy Environ. Sci. 2017, 10, 370–376.

    CAS  Google Scholar 

  44. Yang, J.; Li, J. B.; Wang, T. Y.; Notten, P. H. L.; Ma, H.; Liu, Z. G.; Wang, C. Y.; Wang, G. X. Novel hybrid of amorphous Sb/N-doped layered carbon for high-performance sodium-ion batteries. Chem. Eng. J. 2021, 407, 127169.

    CAS  Google Scholar 

  45. Huang, S. B.; Hsieh, Y. Y.; Chen, K. T.; Tuan, H. Y. Flexible nanostructured potassium-ion batteries. Chem. Eng. J. 2021, 416, 127697.

    CAS  Google Scholar 

  46. Tang, X.; Liu, H.; Guo, X.; Wang, S. J.; Wu, W. J.; Mondal, A. K.; Wang, C. Y.; Wang, G. X. A novel lithium-ion hybrid capacitor based on an aerogel-like MXene wrapped Fe2O3 nanosphere anode and a 3D nitrogen Sulphur dual-doped porous carbon cathode. Mater. Chem. Front. 2018, 2, 1811–1821.

    CAS  Google Scholar 

  47. Hong, W. W.; Wang, A. N.; Li, L.; Qiu, T. Y.; Li, J. Y.; Jiang, Y. L.; Zou, G. Q.; Peng, H. J.; Hou, H. S.; Ji, X. B. Bi dots confined by functional carbon as high-performance anode for lithium ion batteries. Adv. Funct. Mater. 2021, 31, 2000756.

    CAS  Google Scholar 

  48. Zhang, Y.; Zhao, G. G.; Ge, P.; Wu, T. J.; Li, L.; Cai, P.; Liu, C.; Zou, G. Q.; Hou, H. S.; Ji, X. B. Bi2MoO6 microsphere with double-polyaniline layers toward ultrastable lithium energy storage by reinforced structure. Inorg. Chem. 2019, 58, 6410–6421.

    CAS  Google Scholar 

  49. Cao, B.; Zhang, Q.; Liu, H.; Xu, B.; Zhang, S. L.; Zhou, T. F.; Mao, J. F.; Pang, W. K.; Guo, Z. P.; Li, A. et al. Graphitic carbon nanocage as a stable and high power anode for potassium-ion batteries. Adv. Energy Mater. 2018, 8, 1801149.

    Google Scholar 

  50. Zhu, Z. Y.; Liang, F.; Zhou, Z. R.; Zeng, X. Y.; Wang, D.; Dong, P.; Zhao, J. B.; Sun, S. G.; Zhang, Y. J.; Li, X. Expanded biomass-derived hard carbon with ultra-stable performance in sodium-ion batteries. J. Mater. Chem. A 2018, 6, 1513–1522.

    CAS  Google Scholar 

  51. Li, Y. M.; Hu, Y. S.; Titirici, M. M.; Chen, L. Q.; Huang, X. J. Hard carbon microtubes made from renewable cotton as high-performance anode material for sodium-ion batteries. Adv. Energy Mater. 2016, 6, 1600659.

    Google Scholar 

  52. Bodenes, L.; Darwiche, A.; Monconduit, L.; Martinez, H. The solid electrolyte interphase a key parameter of the high performance of Sb in sodium-ion batteries: Comparative X-ray photoelectron spectroscopy study of Sb/Na-ion and Sb/Li-ion batteries. J. Power Sources 2015, 273, 14–24.

    CAS  Google Scholar 

  53. Wang, C. C.; Wang, L. B.; Li, F. J.; Cheng, F. Y.; Chen, J. Bulk bismuth as a high-capacity and ultralong cycle-life anode for sodium-ion batteries by coupling with glyme-based electrolytes. Adv. Mater. 2017, 29, 1702212.

    Google Scholar 

  54. Lu, H. Y.; Wu, L.; Xiao, L. F.; Ai, X. P.; Yang, H. X.; Cao, Y. L. Investigation of the effect of fluoroethylene carbonate additive on electrochemical performance of Sb-based anode for sodium-ion batteries. Electrochim. Acta 2016, 190, 402–408.

    CAS  Google Scholar 

  55. Bao, W. Z.; Shuck, C. E.; Zhang, W. X.; Guo, X.; Gogotsi, Y.; Wang, G. X. Boosting performance of Na-S batteries using sulfur-doped Ti3C2Tx MXene nanosheets with a strong affinity to sodium polysulfides. ACS Nano 2019, 13, 11500–11509.

    CAS  Google Scholar 

  56. Košir, U.; Cigić, I. K.; Markelj, J.; Talian, S. D.; Dominko, R. Polysulfide species in various electrolytes of Li-S batteries — A chromatographic investigation. Electrochim. Acta 2020, 363, 137227.

    Google Scholar 

  57. Zhao, X.; Cai, W.; Yang, Y.; Song, X. D.; Neale, Z.; Wang, H. E.; Sui, J. H.; Cao, G. Z. MoSe2 nanosheets perpendicularly grown on graphene with Mo-C bonding for sodium-ion capacitors. Nano Energy 2018, 47, 224–234.

    CAS  Google Scholar 

  58. Li, Y. Z.; Wang, H. W.; Huang, B. J.; Wang, L. B.; Wang, R.; He, B. B.; Gong, Y. S.; Hu, X. L. Mo2C-induced solid-phase synthesis of ultrathin MoS2 nanosheet arrays on bagasse-derived porous carbon frameworks for high-energy hybrid sodium-ion capacitors. J. Mater. Chem. A 2018, 6, 14742–14751.

    CAS  Google Scholar 

  59. Dong, S. Y.; Shen, L. F.; Li, H. S.; Pang, G.; Dou, H.; Zhang, X. G. Flexible sodium-ion pseudocapacitors based on 3D Na2Ti3O7 nanosheet arrays/carbon textiles anodes. Adv. Funct. Mater. 2016, 26, 3703–3710.

    CAS  Google Scholar 

  60. Zhao, X.; Zhao, Y. D.; Liu, Z. H.; Yang, Y.; Sui, J. H.; Wang, H. E.; Cai, W.; Cao, G. Z. Synergistic coupling of lamellar MoSe2 and SnO2 nanoparticles via chemical bonding at interface for stable and high-power sodium-ion capacitors. Chem. Eng. J. 2018, 354, 1164–1173.

    CAS  Google Scholar 

  61. Liu, S. N.; Luo, Z. G.; Tian, G. Y.; Zhu, M. N.; Cai, Z. Y.; Pan, A. Q.; Liang, S. Q. TiO2 nanorods grown on carbon fiber cloth as binder-free electrode for sodium-ion batteries and flexible sodium-ion capacitors. J. Power Sources 2017, 363, 284–290.

    CAS  Google Scholar 

  62. Que, L. F.; Yu, F. D.; He, K. W.; Wang, Z. B.; Gu, D. M. Robust and conductive Na2Ti2O5−x nanowire arrays for high-performance flexible sodium-ion capacitor. Chem. Mater. 2017, 29, 9133–9141.

    CAS  Google Scholar 

Download references

Acknowledgements

C. Y. W. appreciates the support from a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions. G. X. W. and X. G. would like to acknowledge the support by the Australian Research Council (ARC) through the ARC Research Hub for Integrated Energy Storage Solutions (No. IH180100020).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin Guo, Chengyin Wang or Guoxiu Wang.

Electronic supplementary material

12274_2021_3933_MOESM1_ESM.pdf

Flexible sodium-ion capacitors boosted by high electrochemically-reactive and structurally-stable Sb2S3 nanowire/Ti3C2Tx MXene film anodes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Wang, T., Guo, X. et al. Flexible sodium-ion capacitors boosted by high electrochemically-reactive and structurally-stable Sb2S3 nanowire/Ti3C2Tx MXene film anodes. Nano Res. 16, 5592–5600 (2023). https://doi.org/10.1007/s12274-021-3933-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3933-7

Keywords

Navigation