Skip to main content
Log in

High performance Zn-I2 battery with acetonitrile electrolyte working at low temperature

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Large scale applications of metal-iodine batteries working at sub-zero degree have been challenged by the limited capacity and performance degradation. Herein, we firstly propose a Zn-I2 battery working at low temperature with a carbon composite material/iodine (CCM-I2) cathode, a Zn anode and an environmentally tolerable Zn(ClO4)2-ACN electrolyte. The CCM framework with hierarchical porous structure endows a powerful iodine-anchoring to overcome undesirable dissolution of iodine in organic electrolyte, and the Zn(ClO4)2-ACN electrolyte with low freezing point and high ionic conductivity enhances the low temperature performance. The synergies enable an efficiently reversible conversion of Zn-I2 battery even at −40 °C. Therefore, the resultant Zn-I2 battery delivers a high specific capacity of 200 mAh·g−1, which is fairly approximate to the theoretical capacity of l2 (211 mAh·g−1) and a superior cycling stability with minimal capacity fading of 0.00043% per cycle over 7,000 times under 2C at −20 °C. Furthermore, even at −40 °C, this Zn-I2 battery still exhibits a good capacity retention of 68.7% compared to the capacity at 25 °C and a rapid capacity-recover ability with elevating temperature change. Our results distinctly indicate this Zn-I2 battery can be competent for the practical application under low temperature operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xie, X. S.; Liang, S. Q.; Gao, J. W.; Guo, S.; Guo, J. B.; Wang, C.; Xu, G. Y.; Wu, X. W.; Chen, G.; Zhou, J. Manipulating the iontransfer kinetics and interface stability for high-performance zinc metal anodes. Energy Environ. Sci. 2020, 13, 503–510.

    Article  CAS  Google Scholar 

  2. Ma, L. T.; Chen, S. M.; Li, N.; Liu, Z. X.; Tang, Z. J.; Zapien, J. A.; Chen, S. M.; Fan, J.; Zhi, C. Y. Hydrogen-free and dendrite-free all-solid-state Zn-ion batteries. Adv. Mater. 2020, 32, 1908121.

    Article  CAS  Google Scholar 

  3. Li, H. Z.; Firby, C. J.; Elezzabi, A. Y. Rechargeable aqueous hybrid Zn2+/Al3+ electrochromic batteries. Joule 2019, 3, 2268–2278.

    Article  CAS  Google Scholar 

  4. Wu, B. K.; Luo, W.; Li, M.; Zeng, L.; Mai, L. Q. Achieving better aqueous rechargeable zinc ion batteries with heterostructure electrodes. Nano Res. 2021, 14, 3174–3187.

    Article  CAS  Google Scholar 

  5. Blanc, L. E.; Kundu, D.; Nazar, L. F. Scientific challenges for the implementation of Zn-ion batteries. Joule 2020, 4, 771–799.

    Article  CAS  Google Scholar 

  6. Wu, X. Y.; Xu, Y. K.; Zhang, C.; Leonard, D. P.; Markir, A.; Lu, J.; Ji, X. L. Reverse dual-ion battery via a ZnCl2 waerr-in-Salt electrolyte. J. Am. Chem. Soc. 2019, 141, 6338–6344.

    Article  CAS  Google Scholar 

  7. House, R. A.; Maitra, U.; Perez-Osorio, M. A.; Lozano, J. G.; Jin, L. Y.; Somerville, J. W.; Duda, L. C.; Nag, A.; Walters, A.; Zhou, K. J. et al. Superstructure control of first-cycle voltage hysteresis in oxygen-redox cathodes. Nature 2020, 577, 502–508.

    Article  CAS  Google Scholar 

  8. Nam, K. W.; Kim, H.; Choi, J. H.; Choi, J. W. Crystal water for high performance layered manganese oxide cathodes in aqueous rechargeable zinc batteries. Energy Environ. Sci. 2019, 12, 1999–2009.

    Article  CAS  Google Scholar 

  9. Tang, B.; Shan, L. T.; Liang, S. Q.; Zhou, J. Issues and opportunities facing aqueous zinc-ion batteries. Energy Environ. Sci. 2019, 12, 3288–3304.

    Article  CAS  Google Scholar 

  10. Cui, J.; Guo, Z. W.; Yi, J.; Liu, X. Y.; Wu, K.; Liang, P. C.; Li, Q.; Liu, Y. Y.; Wang, Y. G.; Xia, Y. Y. et al. Organic cathode materials for rechargeable zinc batteries: Mechanisms, challenges, and perspectives. ChemSusChem 2020, 13, 2160–2185.

    Article  CAS  Google Scholar 

  11. Song, X. L.; Wang, H.; Jin, S. M.; Lv, M.; Zhang, Y.; Kong, X. D.; Xu, H. M.; Ma, T.; Luo, X. Y.; Tan, H. F. et al. Oligolayered Ti3C2T MXene towards high performance lithium/sodium storage. Nano Res. 2020, 13, 1659–1667.

    Article  CAS  Google Scholar 

  12. Li, Z. X.; Ma, C.; Wen, Y. Y.; Wei, Z. T.; Xing, X. F.; Chu, J. M.; Yu, C. C.; Wang, K. L.; Wang, Z. K. Highly conductive dodecaborate/MXene composites for high performance supercapacitors. Nano Res. 2020, 13, 196–202.

    Article  CAS  Google Scholar 

  13. Simonov, A.; De Baerdemaeker, T.; Boström, H. L. B.; Ríos Gómez, M. L.; Gray, H. J.; Chernyshov, D.; Bosak, A.; Bürgi, H. B.; Goodwin, A. L. Hidden diversity of vacancy networks in prussian blue analogues. Nature 2020, 578, 256–260.

    Article  CAS  Google Scholar 

  14. Nai, J. W.; Lou, X. W. Hollow structures based on prussian blue and its analogs for electrochemical energy storage and conversion. Adv. Mater. 2019, 31, 1706825.

    Article  Google Scholar 

  15. Yang, Q.; Mo, F. N.; Liu, Z. X.; Ma, L. T.; Li, X. L.; Fang, D. L.; Chen, S. M.; Zhang, S. J.; Zhi, C. Y. Activating C-coordinated iron of iron hexacyanoferrate for Zn hybrid-ion batteries with 10000-cycle lifespan and superior rate capability. Adv. Mater. 2019, 31, 1901521.

    Article  Google Scholar 

  16. Jiang, C. L.; Xiang, L.; Miao, S. J.; Shi, L.; Xie, D. H.; Yan, J. X.; Zheng, Z. J.; Zhang, X. M.; Tang, Y. B. Flexible interface design for stress regulation of a silicon anode toward highly stable dual-ion batteries. Adv. Mater. 2020, 32, 1908470.

    Article  CAS  Google Scholar 

  17. Wang, F.; Borodin, O.; Gao, T.; Fan, X. L.; Sun, W.; Han, F. D.; Faraone, A.; Dura, J. A.; Xu, K.; Wang, C. S. Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 2018, 17, 543–549.

    Article  CAS  Google Scholar 

  18. Zeng, X. H.; Hao, J. N.; Wang, Z. J.; Mao, J. F.; Guo, Z. P. Recent progress and perspectives on aqueous Zn-based rechargeable batteries with mild aqueous electrolytes. Energy Stor. Mater. 2019, 20, 410–437.

    Google Scholar 

  19. Guo, Z. L.; Wang, T. S.; Wei, H. H.; Long, Y. Z.; Yang, C.; Wang, D.; Lang, J. L.; Huang, K.; Hussain, N.; Song, C. X. et al. Ice as solid electrolyte to conduct various kinds of ions. Angew. Chem., Int. Ed. 2019, 58, 12569–12573.

    Article  CAS  Google Scholar 

  20. Chang, N. N.; Li, T. Y.; Li, R.; Wang, S. N.; Yin, Y. B.; Zhang, H. M.; Li, X. F. An aqueous hybrid electrolyte for low-temperature zinc-based energy storage devices. Energy Environ. Sci. 2020, 13, 3527–3535.

    Article  CAS  Google Scholar 

  21. Zhao, Y. W.; Chen, Z.; Mo, F. N.; Wang, D. H.; Guo, Y.; Liu, Z. X.; Li, X. L.; Li, Q.; Liang, G. J.; Zhi, C. Y. Aqueous rechargeable metal-ion batteries working at subzero temperatures. Adv. Sci. 2020, 8, 2002590.

    Article  Google Scholar 

  22. Wang, N.; Dong, X. L.; Wang, B. L.; Guo, Z. W.; Wang, Z.; Wang, R. H.; Qiu, X.; Wang, Y. G. Zinc-organic battery with a wide operation-temperature window from −70 to 150 °C. Angew. Chem., Int. Ed. 2020, 59, 14577–14583.

    Article  CAS  Google Scholar 

  23. Mo, F. N.; Liang, G. L.; Meng, Q. Q.; Liu, Z. X.; Li, H. F.; Fan, J.; Zhi, C. Y. A flexible rechargeable aqueous zinc manganese-dioxide battery working at −20 °C. Energy Environ. Sci. 2019, 12, 706–715.

    Article  CAS  Google Scholar 

  24. Yang, W. H.; Du, X. F.; Zhao, J. W.; Chen, Z.; Li, J. J.; Xie, J.; Zhang, Y. J.; Cui, Z. L.; Kong, Q. Y.; Zhao, Z. M. et al. Hydrated eutectic electrolytes with ligand-oriented solvation shells for long-cycling zinc-organic batteries. Joule 2020, 4, 1557–1574.

    Article  CAS  Google Scholar 

  25. Ma, J. Z.; Liu, M. M.; He, Y. L.; Zhang, J. T. Iodine redox chemistry in rechargeable batteries. Angew. Chem., Int. Ed. 2021, 60, 12636–12647.

    Article  CAS  Google Scholar 

  26. Bai, C.; Cai, F. S.; Wang, L. C.; Guo, S. Q.; Liu, X. Z.; Yuan, Z. H. A sustainable aqueous Zn-I2 battery. Nano Res. 2018 11, 3548–3554.

    Article  CAS  Google Scholar 

  27. Yang, Y. Y. C.; Davies, D. M.; Yin, Y. J.; Borodin, O.; Lee, J. Z.; Fang, C. C.; Olguin, M.; Zhang, Y. H.; Sablina, E. S.; Wang, X. F. et al. High-efficiency lithium-metal anode enabled by liquefied gas electrolytes. Joule 2019, 3, 1986–2000.

    Article  CAS  Google Scholar 

  28. Dong, X. L.; Lin, Y. X.; Li, P. L.; Ma, Y. Y.; Huang, J. H.; Bin, D.; Wang, Y. G.; Qi, Y.; Xia, Y. Y. High-energy rechargeable metallic lithium battery at −70 °C enabled by a cosolvent electrolyte. Angew. Chem., Int. Ed. 2019, 58, 5623–5627.

    Article  CAS  Google Scholar 

  29. Dong, X. L.; Guo, Z. W.; Guo, Z. Y.; Wang, Y. G.; Xia, Y. Y. Organic batteries operated at −70 °C. Joule 2018, 2, 902–913.

    Article  CAS  Google Scholar 

  30. Dong, X. L.; Yang, Y.; Wang, B. L.; Cao, Y. J.; Wang, N.; Li, P. L.; Wang, Y. G.; Xia, Y. Y. Low-temperature charge/discharge of rechargeable battery realized by intercalation pseudocapacitive behavior. Adv. Sci. 2020, 7, 2000196.

    Article  CAS  Google Scholar 

  31. Pan, H. L.; Li, B.; Mei, D. H.; Nie, Z. M.; Shao, Y. Y.; Li, G. S.; Li, X. S.; Han, K. S.; Mueller, K. T.; Sprenkle, V. et al. Controlling solid-liquid conversion reactions for a highly reversible aqueous zinc-iodine battery. ACS Energy Lett. 2017, 2, 2674–2680.

    Article  CAS  Google Scholar 

  32. Li, Y. X.; Liu, L. J.; Li, H. X.; Cheng, F. Y.; Chen, J. Rechargeable aqueous zinc-iodine batteries: Pore confining mechanism and flexible device application. Chem. Commun. 2018, 54, 6792–6795.

    Article  CAS  Google Scholar 

  33. Wang, Z.; Huang, J. H.; Guo, Z. W.; Dong, X. L.; Liu, Y.; Wang, Y. G.; Xia, Y. Y. A metal-organic framework host for highly reversible dendrite-free zinc metal anodes. Joule 2019, 3, 1289–1300.

    Article  CAS  Google Scholar 

  34. Yu, D. L.; Kumar, A.; Nguyen, T. A.; Nazir, M. T.; Yasin, G. Highvoltage and ultrastable aqueous zinc-iodine battery enabled by N-doped carbon materials: Revealing the contributions of nitrogen configurations. ACS Sustainable Chem. Eng. 2020, 8, 13769–13776.

    Article  CAS  Google Scholar 

  35. Tian, H. J.; Gao, T.; Li, X. G.; Wang, X. W.; Luo, C.; Fan, X. L.; Yang, C. Y.; Suo, L. M.; Ma, Z. H.; Han, W. Q. et al. High power rechargeable magnesium/iodine battery chemistry. Nat. Commun. 2017, 8, 14083.

    Article  CAS  Google Scholar 

  36. Zhang, S. L.; Tan, X. J.; Meng, Z.; Tian, H. J.; Xu, F. F.; Han, W. Q. Naturally abundant high-performance rechargeable aluminum/iodine batteries based on conversion reaction chemistry. J. Mater. Chem. A 2018, 6, 9984–9996.

    Article  CAS  Google Scholar 

  37. Lu, K.; Zhang, H.; Song, B.; Pan, W.; Ma, H. Y.; Zhang, J. T. Sulfur and nitrogen enriched graphene foam scaffolds for aqueous rechargeable zinc-iodine battery. Electrochim. Acta 2019, 296, 755–761.

    Article  CAS  Google Scholar 

  38. Li, X. L.; Li, M.; Huang, Z. D.; Liang, G. J.; Chen, Z.; Yang, Q.; Huang, Q.; Zhi, C. Y. Activating the I0/I+ redox couple in an aqueous I2-Zn battery to achieve a high voltage plateau. Energy Environ. Sci. 2021, 14, 407–413.

    Article  CAS  Google Scholar 

  39. Zeng, X. M.; Meng, X. J.; Jiang, W.; Liu, J.; Ling, M.; Yan, L. J.; Liang, C. D. Anchoring polyiodide to conductive polymers as cathode for high-performance aqueous zinc-iodine batteries. ACS Sustainable Chem. Eng. 2020, 8, 14280–14285.

    Article  CAS  Google Scholar 

  40. Hong, J. J.; Zhu, L. D.; Chen, C.; Tang, L. T.; Jiang, H.; Jin, B.; Gallagher, T. C.; Guo, Q. B.; Fang, C.; Ji, X. L. A dual plating battery with the iodine/[ZnIx(OH2)4−x](2−x) cathode. Angew. Chem., Int. Ed. 2019, 58, 15910–15915.

    Article  CAS  Google Scholar 

  41. Tian, H. J.; Zhang, S. L.; Meng, Z.; He, W.; Han, W. Q. Rechargeable aluminum/iodine battery redox chemistry in ionic liquid electrolyte. ACS Energy Lett. 2017, 2, 1170–1176.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (No. 2017YFA0700104), the Tianjin Natural Science Foundation of China (No. 20JCZDJC00280), and the National Natural Science Foundation of China (No. U1804255).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhihao Yuan or Xizheng Liu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, C., Gong, Z., Bai, C. et al. High performance Zn-I2 battery with acetonitrile electrolyte working at low temperature. Nano Res. 15, 3170–3177 (2022). https://doi.org/10.1007/s12274-021-3884-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3884-z

Keywords

Navigation