Skip to main content

Advertisement

Log in

Low-power STED nanoscopy based on temporal and spatial modulation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Stimulated emission depletion (STED) nanoscopy enables the visualization of subcellular organelles in unprecedented detail. However, reducing the power dependency remains one of the greatest challenges for STED imaging in living cells. Here, we propose a new method, called modulated STED, to reduce the demand for depletion power in STED imaging by modulating the information from the temporal and spatial domains. In this approach, an excitation pulse is followed by a depletion pulse with a longer delay; therefore, the fluorescence decay curve contains both confocal and STED photons in a laser pulse period. With time-resolved detection, we can remove residual diffraction-limited signals pixel by pixel from STED photons by taking the weighted difference of the depleted photons. Finally, fluorescence emission in the periphery of an excitation spot is further inhibited through spatial modulation of fluorescent signals, which replaced the increase of the depletion power in conventional STED. We demonstrate that the modulated STED method can achieve a resolution of < 100 nm in both fixed and living cells with a depletion power that is dozens of times lower than that of conventional STED, therefore, it is very suitable for long-term super-resolution imaging of living cells. Furthermore, the idea of the method could open up a new avenue to the implementation of other experiments, such as light-sheet imaging, multicolor and three-demensional (3D) super-resolution imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sahl, S. J.; Hell, S. W.; Jakobs, S. Fluorescence nanoscopy in cell biology. Nat. Rev. Mol. Cell Biol. 2017, 18, 685–701.

    Article  CAS  Google Scholar 

  2. Sigal, Y. M.; Zhou, R. B.; Zhuang, X. W. Visualizing and discovering cellular structures with super-resolution microscopy. Science 2018, 361, 880–887.

    Article  CAS  Google Scholar 

  3. Jin, D. Y.; Xi, P.; Wang, B. M.; Zhang, L.; Enderlein, J.; Van Oijen, A. M. Nanoparticles for super-resolution microscopy and single-molecule tracking. Nat. Methods 2018, 15, 415–423.

    Article  CAS  Google Scholar 

  4. Schermelleh, L.; Ferrand, A.; Huser, T.; Eggeling, C.; Sauer, M.; Biehlmaier, O.; Drummen, G. P. C. Super-resolution microscopy demystified. Nat. Cell Biol. 2019, 21, 72–84.

    Article  CAS  Google Scholar 

  5. Hell, S. W.; Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: Stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 1994, 19, 780–782.

    Article  CAS  Google Scholar 

  6. Klar, T. A.; Jakobs, S.; Dyba, M.; Egner, A.; Hell, S. W. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc. Natl. Acad. Sci. USA 2000, 97, 8206–8210.

    Article  CAS  Google Scholar 

  7. Blom, H.; Widengren, J. Stimulated emission depletion microscopy. Chem. Rev. 2017, 117, 7377–7427.

    Article  CAS  Google Scholar 

  8. Gould, T. J.; Verkhusha, V. V.; Hess, S. T. Imaging biological structures with fluorescence photoactivation localization microscopy. Nat. Protoc. 2009, 4, 291–308.

    Article  CAS  Google Scholar 

  9. Rust, M. J.; Bates, M.; Zhuang, X. W. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 2006, 3, 793–796.

    Article  CAS  Google Scholar 

  10. Sauer, M.; Heilemann, M. Single-molecule localization microscopy in eukaryotes. Chem. Rev. 2017, 117, 7478–7509.

    Article  CAS  Google Scholar 

  11. Gustafsson, M. G. L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc. 2000, 198, 82–87.

    Article  CAS  Google Scholar 

  12. Gustafsson, M. G. L. Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution. Proc. Natl. Acad. Sci. USA 2005, 102, 13081–13086.

    Article  CAS  Google Scholar 

  13. Heintzmann, R.; Huser, T. Super-resolution structured illumination microscopy. Chem. Rev. 2017, 117, 13890–13908.

    Article  CAS  Google Scholar 

  14. Balzarotti, F.; Eilers, Y.; Gwosch, K. C.; Gynnå, A. H.; Westphal, V.; Stefani, F. D.; Elf, J.; Hell, S. W. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes. Science 2017, 355, 606–612.

    Article  CAS  Google Scholar 

  15. Eilers, Y.; Ta, H.; Gwosch, K. C.; Balzarotti, F.; Hell, S. W. MINFLUX monitors rapid molecular jumps with superior spatiotemporal resolution. Proc. Natl. Acad. Sci. USA 2018, 115, 6117–6122.

    Article  CAS  Google Scholar 

  16. Gwosch, K. C.; Pape, J. K.; Balzarotti, F.; Hoess, P.; Ellenberg, J.; Ries, J.; Hell, S. W. MINFLUX nanoscopy delivers 3D multicolor nanometer resolution in cells. Nat. Methods 2020, 17, 217–224.

    Article  CAS  Google Scholar 

  17. Willig, K. I.; Rizzoli, S. O.; Westphal, V.; Jahn, R.; Hell, S. W. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature 2006, 440, 935–939.

    Article  CAS  Google Scholar 

  18. Yang, X. S.; Yang, Z. G.; Wu, Z. Y.; He, Y.; Shan, C. Y.; Chai, P. Y.; Ma, C. S.; Tian, M.; Teng, J. L.; Jin, D. Y. et al. Mitochondrial dynamics quantitatively revealed by STED nanoscopy with an enhanced squaraine variant probe. Nat. Commun. 2020, 11, 3699.

    Article  CAS  Google Scholar 

  19. Spahn, C.; Grimm, J. B.; Lavis, L. D.; Lampe, M.; Heilemann, M. Whole-cell, 3D, and multicolor STED imaging with exchangeable fluorophores. Nano Lett. 2019, 19, 500–505.

    Article  CAS  Google Scholar 

  20. Vicidomini, G.; Bianchini, P.; Diaspro, A. STED super-resolved microscopy. Nat. Methods 2018, 15, 173–182.

    Article  CAS  Google Scholar 

  21. Vicidomini, G.; Moneron, G.; Han, K. Y.; Westphal, V.; Ta, H.; Reuss, M.; Engelhardt, J.; Eggeling, C.; Hell, S. W. Sharper low-power STED nanoscopy by time gating. Nat. Methods 2011, 8, 571–573.

    Article  CAS  Google Scholar 

  22. Vicidomini, G.; Schönle, A.; Ta, H.; Han, K. Y.; Moneron, G.; Eggeling, C.; Hell, S. W. STED nanoscopy with time-gated detection: Theoretical and experimental aspects. PLoS One 2013, 8, e54421.

    Article  CAS  Google Scholar 

  23. Wang, Y. F.; Kuang, C. F.; Gu, Z. T.; Xu, Y. K.; Li, S.; Hao, X.; Liu, X. Time-gated stimulated emission depletion nanoscopy. Opt. Eng. 2013, 52, 093107.

    Article  Google Scholar 

  24. Bordenave, M. D.; Balzarotti, F.; Stefani, F. D.; Hell, S. W. STED nanoscopy with wavelengths at the emission maximum. J. Phys. D:Appl. Phys. 2016, 49, 365102.

    Article  Google Scholar 

  25. Gao, P.; Prunsche, B.; Zhou, L.; Nienhaus, K.; Nienhaus, G. U. Background suppression in fluorescence nanoscopy with stimulated emission double depletion. Nat. Photonics 2017, 11, 163–169.

    Article  CAS  Google Scholar 

  26. Gao, P.; Nienhaus, G. U. Precise background subtraction in stimulated emission double depletion nanoscopy. Opt. Lett. 2017, 42, 831–834.

    Article  CAS  Google Scholar 

  27. Lanzanò, L.; Hernández, I. C.; Castello, M.; Gratton, E.; Diaspro, A.; Vicidomini, G. Encoding and decoding spatio-temporal information for super-resolution microscopy. Nat. Commun. 2015, 6, 6701.

    Article  Google Scholar 

  28. Wang, L. W.; Chen, B. L.; Yan, W.; Yang, Z. G.; Peng, X.; Lin, D. Y.; Weng, X. Y.; Ye, T.; Qu, J. L. Resolution improvement in STED super-resolution microscopy at low power using a phasor plot approach. Nanoscale 2018, 10, 16252–16260.

    Article  CAS  Google Scholar 

  29. Tortarolo, G.; Sun, Y. S.; Teng, K. W.; Ishitsuka, Y.; Lanzanó, L.; Selvin, P. R.; Barbieri, B.; Diaspro, A.; Vicidomini, G. Photonseparation to enhance the spatial resolution of pulsed STED microscopy. Nanoscale 2019, 11, 1754–1761.

    Article  CAS  Google Scholar 

  30. Chen, Y.; Wang, L. W.; Yan, W.; Peng, X.; Qu, J. L.; Song, J. Elimination of re-excitation in stimulated emission depletion nanoscopy based on photon extraction in a phasor plot. Laser Photonics Rev. 2020, 14, 1900352.

    Article  CAS  Google Scholar 

  31. Wang, L. W.; Chen, Y.; Peng, X.; Zhang, J.; Wang, J. L.; Liu, L. W.; Yang, Z. G.; Yan, W.; Qu, J. L. Ultralow power demand in fluorescence nanoscopy with digitally enhanced stimulated emission depletion. Nanophotonics 2020, 9, 831–839.

    Article  CAS  Google Scholar 

  32. Kuang, C. F.; Li, S.; Liu, W.; Hao, X.; Gu, Z. T.; Wang, Y. F.; Ge, J. H.; Li, H. F.; Liu, X. Breaking the diffraction barrier using fluorescence emission difference microscopy. Sci. Rep. 2013, 3, 1441.

    Article  Google Scholar 

  33. Vicidomini, G.; Moneron, G.; Eggeling, C.; Rittweger, E.; Hell, S. W. STED with wavelengths closer to the emission maximum. Opt. Express 2012, 20, 5225–5236.

    Article  CAS  Google Scholar 

  34. Descloux, A.; Grußmayer, K. S.; Radenovic, A. Parameter-free image resolution estimation based on decorrelation analysis. Nat. Methods 2019, 16, 918–924.

    Article  CAS  Google Scholar 

  35. Yao, R. W.; Xu, G.; Wang, Y.; Shan, L.; Luan, P. F.; Wang, Y.; Wu, M.; Yang, L. Z.; Xing, Y. H.; Yang, L. et al. Nascent pre-rRNA sorting via phase separation drives the assembly of dense fibrillar components in the human nucleolus. Mol. Cell 2019, 76, 767–783.

    Article  CAS  Google Scholar 

  36. Lafontaine, D. L. J.; Riback, J. A.; Bascetin, R.; Brangwynne, C. P. The nucleolus as a multiphase liquid condensate. Nat. Rev. Mol. Cell Biol. 2021, 22, 165–182.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by the National Basic Research Program of China (No. 2017YFA0700500); the National Natural Science Foundation of China (Nos. 61620106016, 61835009, 62005171, and 61975127); Guangdong Natural Science Foundation (Nos. 2019A1515110380 and 2020A1515010679); Shenzhen International Cooperation Project (No. GJHZ20180928161811821); Shenzhen Basic Research Project (No. JCYJ20180305125304883); China Post-doctoral Science Foundation (No. 2019M663050).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Yan or Junle Qu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Chen, Y., Guo, Y. et al. Low-power STED nanoscopy based on temporal and spatial modulation. Nano Res. 15, 3479–3486 (2022). https://doi.org/10.1007/s12274-021-3874-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3874-1

Keywords

Navigation