Skip to main content
Log in

Underlying solvent-based factors that influence permanent porosity in porous liquids

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Porous liquids (PLs) offer the potential to combine the ready handling and mature industry status of liquid absorbents, with the high permanent porosity of metal organic frameworks. To be functional, these nanocomposites need to satisfy a number of performance parameters, such as stability and viscosity of the porogen-solvent combination, avoiding solvent penetration into metal organic framework (MOF) pores, suitable capacities, and kinetics for gas sorption. In this work, we systematically investigate the component materials to elucidate the parametric space where stable photoluminescence (PL) can be generated. In this situation, deeper conclusions were able to be drawn with regard to the influence of hydrophobicity/philicity on the properties of the resulting nanocomposites. Zeolitic imidazolate frameworks (ZIFs) were combined with a range of solvents varying in steric bulk, to deliver CO2 sorption capacities as high as 4.2 mmolg−1 at 10 bar. These findings may have broader implications for future investigations of this tantalising field of nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Giri, N.; Del Pópolo, M. G.; Melaugh, G.; Greenaway, R. L.; Rätzke, K.; Koschine, T.; Pison, L.; Gomes, M. F. C.; Cooper, A. I.; James, S. L. Liquids with permanent porosity. Nature 2015, 527, 216–220.

    Article  CAS  Google Scholar 

  2. Shan, W. D.; Fulvio, P. F.; Kong, L. Y.; Schott, J. A.; Do-Thanh, C. L.; Tian, T.; Hu, X. X.; Mahurin, S. M.; Xing, H. B.; Dai, S. New class of type III porous liquids: A promising platform for rational adjustment of gas sorption behavior. ACS Appl. Mater. Interfaces 2018, 10, 32–36.

    Article  CAS  Google Scholar 

  3. Zhang, J. S.; Chai, S. H.; Qiao, Z. A.; Mahurin, S. M.; Chen, J. H.; Fang, Y. X.; Wan, S.; Nelson, K.; Zhang, P. F.; Dai, S. Porous liquids: A promising class of media for gas separation. Angew. Chem., Int. Ed. 2015, 54, 932–936.

    Article  CAS  Google Scholar 

  4. O’Reilly, N.; Giri, N.; James, S. L. Porous liquids. Chem. -Eur. J. 2007, 13, 3020–3025.

    Article  Google Scholar 

  5. Cooper, A. I. Porous molecular solids and liquids. ACS Cent. Sci. 2017, 3, 544–553.

    Article  CAS  Google Scholar 

  6. Bennett, T. D.; Coudert, F. X.; James, S. L.; Cooper, A. I. The changing state of porous materials. Nat. Mater. 2021, 1–9.

    Google Scholar 

  7. Li, X. F.; Wang, S. J.; Chen, C. H. Experimental study of energy requirement of CO2 desorption from rich solvent. Energy Procedia 2013, 37, 1836–1843.

    Article  CAS  Google Scholar 

  8. Lu, A. H.; Hao, G. P. Porous materials for carbon dioxide capture. Annu. Rep. Prog. Chem., Sect. A: Inorg. Chem. 2013, 109, 484.

    Article  CAS  Google Scholar 

  9. James, S. L. The dam bursts for porous liquids. Adv. Mater. 2016, 28, 5712–5716.

    Article  CAS  Google Scholar 

  10. Greenaway, R. L.; Holden, D.; Eden, E. G. B.; Stephenson, A.; Yong, C. W.; Bennison, M. J.; Hasell, T.; Briggs, M. E.; James, S. L.; Cooper, A. I. Understanding gas capacity, guest selectivity, and diffusion in porous liquids. Chem. Sci. 2017, 8, 2640–2651.

    Article  CAS  Google Scholar 

  11. Lai, B. B.; Cahir, J.; Tsang, M. Y.; Jacquemin, J.; Rooney, D.; Murrer, B.; James, S. L. Type 3 porous liquids for the separation of ethane and ethene. ACS Appl. Mater. Interfaces 2021, 13, 932–936.

    Article  CAS  Google Scholar 

  12. Wang, Y.; Sun, Y. W.; Bian, H.; Zhu, L. J.; Xia, D. H.; Wang, H. Z. Cyclodextrin porous liquid materials for efficient chiral recognition and separation of nucleosides. ACS Appl. Mater. Interfaces 2020, 12, 45916–45928.

    Article  CAS  Google Scholar 

  13. Hasell, T.; Cooper, A. I. Porous organic cages: Soluble, modular and molecular pores. Nat. Rev. Mater. 2016, 1, 16053.

    Article  CAS  Google Scholar 

  14. Bavykina, A.; Cadiau, A.; Gascon, J. Porous liquids based on porous cages, metal organic frameworks and metal organic polyhedra. Coord. Chem. Rev. 2019, 386, 85–95.

    Article  CAS  Google Scholar 

  15. Giri, N.; Davidson, C. E.; Melaugh, G.; Del Pópolo, M. G.; Jones, J. T. A.; Hasell, T.; Cooper, A. I.; Horton, P. N.; Hursthouse, M. B.; James, S. L. Alkylated organic cages: From porous crystals to neat liquids. Chem. Sci. 2012, 3, 2153–2157.

    Article  CAS  Google Scholar 

  16. Wang, D. C.; Xin, Y. Y.; Li, X. Q.; Wang, F.; Wang, Y. D.; Zhang, W. R.; Zheng, Y. P.; Yao, D. D.; Yang, Z. Y.; Lei, X. F. A universal approach to turn UiO-66 into type 1 porous liquids via post-synthetic modification with corona-canopy species for CO2 capture. Chem. Eng. J. 2021, 416, 127625.

    Article  CAS  Google Scholar 

  17. Wang, D. C.; Xin, Y. Y.; Li, X. Q.; Ning, H. L.; Wang, Y. D.; Yao, D. D.; Zheng, Y. P.; Meng, Z. Y.; Yang, Z. Y.; Pan, Y. T. et al. Transforming metal-organic frameworks into porous liquids via a covalent linkage strategy for CO2 capture. ACS Appl. Mater. Interfaces 2021, 13, 2600–2609.

    Article  CAS  Google Scholar 

  18. Wang, D. C.; Xin, Y. Y.; Wang, Y. D.; Li, X. Q.; Wu, H.; Zhang, W. R.; Yao, D. D.; Wang, H. N.; Zheng, Y. P.; He, Z. J. et al. A general way to transform Ti3C2Tx mxene into solvent-free fluids for filler phase applications. Chem. Eng. J. 2021, 409, 128082.

    Article  CAS  Google Scholar 

  19. Li, X. Q.; Wang, D. C.; He, Z. J.; Su, F. F.; Zhang, N.; Xin, Y. Y.; Wang, H. N.; Tian, X. L.; Zheng, Y. P.; Yao, D. D. et al. Zeolitic imidazolate frameworks-based porous liquids with low viscosity for CO2 and toluene uptakes. Chem. Eng. J. 2021, 417, 129239.

    Article  CAS  Google Scholar 

  20. Deng, Z.; Ying, W.; Gong, K.; Zeng, Y. J.; Yan, Y. G.; Peng, X. S. Facilitate gas transport through metal-organic polyhedra constructed porous liquid membrane. Small 2020, 16, 1907016.

    Article  CAS  Google Scholar 

  21. Mow, R. E.; Lipton, A. S.; Shulda, S.; Gaulding, E. A.; Gennett, T.; Braunecker, W. A. Colloidal three-dimensional covalent organic frameworks and their application as porous liquids. J. Mater. Chem. A 2020, 8, 23455–23462.

    Article  CAS  Google Scholar 

  22. Cahir, J.; Tsang, M. Y.; Lai, B. B.; Hughes, D.; Alam, M. A.; Jacquemin, J.; Rooney, D.; James, S. L. Type 3 porous liquids based on non-ionic liquid phases-a broad and tailorable platform of selective, fluid gas sorbents. Chem. Sci. 2020, 11, 2077–2084.

    Article  CAS  Google Scholar 

  23. Park, K. S.; Ni, Z.; Côté, A. P.; Choi, J. Y.; Huang, R. D.; Uribe-Romo, F. J.; Chae, H. K.; O’Keeffe, M.; Yaghi, O. M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA 2006, 103, 10186–10191.

    Article  CAS  Google Scholar 

  24. Kearsey, R. J.; Alston, B. M.; Briggs, M. E.; Greenaway, R. L.; Cooper, A. I. Accelerated robotic discovery of type II porous liquids. Chem. Sci. 2019, 10, 9454–9465.

    Article  CAS  Google Scholar 

  25. James, S.; Tsang, M. Y.; Cahir, J.; Rooney, D. Porous liquids 2017. U. S. Patent No. 2020/0330919 A1, 2020.

  26. Liu, H.; Liu, B.; Lin, L. C.; Chen, G. J.; Wu, Y. Q.; Wang, J.; Gao, X. T.; Lv, Y. N.; Pan, Y.; Zhang, X. X. et al. A hybrid absorptionadsorption method to efficiently capture carbon. Nat. Commun. 2014, 5, 5147.

    Article  CAS  Google Scholar 

  27. Kitagawa, S.; Kitaura, R.; Noro, S. I. Functional porous coordination polymers. Angew. Chem., Int. Ed. 2004, 43, 2334–2375.

    Article  CAS  Google Scholar 

  28. Liu, S. J.; Liu, J. D.; Hou, X. D.; Xu, T. T.; Tong, J.; Zhang, J. X.; Ye, B. J.; Liu, B. Porous liquid: A stable ZIF-8 colloid in ionic liquid with permanent porosity. Langmuir 2018, 34, 3654–3660.

    Article  CAS  Google Scholar 

  29. Li, Y.; Liu, J. T.; Zhang, K. H.; Lei, L.; Lei, Z. L. UiO-66-NH2@pmaa: A hybrid polymer-MOFs architecture for pectinase immobilization. Ind. Eng. Chem. Res. 2018, 57, 559–567.

    Article  CAS  Google Scholar 

  30. Kalaj, M.; Denny, M. S. Jr.; Bentz, K. C.; Palomba, J. M.; Cohen, S. M. Nylon-MOF composites through postsynthetic polymerization. Angew. Chem., Int. Ed. 2019, 58, 2336–2340.

    Article  CAS  Google Scholar 

  31. Nagata, S.; Kokado, K.; Sada, K. Metal-organic framework tethering pnipam for on-off controlled release in solution. Chem. Commun. 2015, 51, 8614–8617.

    Article  CAS  Google Scholar 

  32. Lázaro, I. A.; Haddad, S.; Sacca, S.; Orellana-Tavra, C.; Fairen-Jimenez, D.; Forgan, R. S. Selective surface PEGylation of UiO-66 nanoparticles for enhanced stability, cell uptake, and pH-responsive drug delivery. Chem 2017, 2, 561–578.

    Article  Google Scholar 

  33. Venna, S. R.; Lartey, M.; Li, T.; Spore, A.; Kumar, S.; Nulwala, H. B.; Luebke, D. R.; Rosi, N. L.; Albenze, E. Fabrication of MMMs with improved gas separation properties using externally-functionalized MOF particles. J. Mater. Chem. A 2015 3, 5014–5022.

    Article  CAS  Google Scholar 

  34. Morris, W.; Briley, W. E.; Auyeung, E.; Cabezas, M. D.; Mirkin, C. A. Nucleic acid-metal organic framework (MOF) nanoparticle conjugates. J. Am. Chem. Soc. 2014, 136, 7261–7264.

    Article  CAS  Google Scholar 

  35. McGuire, C. V.; Forgan, R. S. The surface chemistry of metal-organic frameworks. Chem. Commun. 2015, 51, 5199–5217.

    Article  CAS  Google Scholar 

  36. Wang, S. Z.; Morris, W.; Liu, Y. Y.; McGuirk, C. M.; Zhou, Y.; Hupp, J. T.; Farha, O. K.; Mirkin, C. A. Surface-specific functionalization of nanoscale metal-organic frameworks. Angew. Chem., Int. Ed. 2015, 54, 14738–14742.

    Article  CAS  Google Scholar 

  37. He, C. B.; Lu, K. D.; Lin, W. B. Nanoscale metal-organic frameworks for real-time intracellular pH sensing in live cells. J. Am. Chem. Soc. 2014, 136, 12253–12256.

    Article  CAS  Google Scholar 

  38. He, C. B.; Liu, D. M.; Lin, W. B. Nanomedicine applications of hybrid nanomaterials built from metal-ligand coordination bonds: Nanoscale metal-organic frameworks and nanoscale coordination polymers. Chem. Rev. 2015, 115, 11079–11108.

    Article  CAS  Google Scholar 

  39. He, C. B.; Lu, K. D.; Liu, D. M.; Lin, W. B. Nanoscale metal-organic frameworks for the co-delivery of cisplatin and pooled sirnas to enhance therapeutic efficacy in drug-resistant ovarian cancer cells. J. Am. Chem. Soc. 2014, 136, 5181–5184.

    Article  CAS  Google Scholar 

  40. Rieter, W. J.; Taylor, K. M. L.; Lin, W. B. Surface modification and functionalization of nanoscale metal-organic frameworks for controlled release and luminescence sensing. J. Am. Chem. Soc. 2007, 129, 9852–9853.

    Article  CAS  Google Scholar 

  41. Morris, W.; Wang, S. Z.; Cho, D.; Auyeung, E.; Li, P.; Farha, O. K.; Mirkin, C. A. Role of modulators in controlling the colloidal stability and polydispersity of the UiO-66 metal-organic framework. ACS Appl. Mater. Interfaces 2017, 9, 33413–33418.

    Article  CAS  Google Scholar 

  42. Annapureddy, H. V. R.; Nune, S. K.; Motkuri, R. K.; McGrail, B. P.; Dang, L. X. A combined experimental and computational study on the stability of nanofluids containing metal organic frameworks. J. Phys. Chem. B 2015, 119, 8992–8999.

    Article  CAS  Google Scholar 

  43. Fulvio, P. F.; Dai, S. Porous liquids: The next frontier. Chem 2020, 6, 3263–3287.

    Article  CAS  Google Scholar 

  44. Rubio-Martinez, M.; Avci-Camur, C.; Thornton, A. W.; Imaz, I.; Maspoch, D.; Hill, M. R. New synthetic routes towards MOF production at scale. Chem. Soc. Rev. 2017, 46, 3453–3480.

    Article  CAS  Google Scholar 

  45. Zhang, C. Y.; Han, C.; Sholl, D. S.; Schmidt, J. R. Computational characterization of defects in metal-organic frameworks: Spontaneous and water-induced point defects in ZIF-8. J. Phys. Chem. Lett. 2016, 7, 459–464.

    Article  CAS  Google Scholar 

  46. Smith, S. J. D.; Konstas, K.; Lau, C. H.; Gozukara, Y. M.; Easton, C. D.; Mulder, R. J.; Ladewig, B. P.; Hill, M. R. Post-synthetic annealing: Linker self-exchange in UiO-66 and its effect on polymer-metal organic framework interaction. Cryst. Growth Des. 2017, 17, 4384–4392.

    Article  CAS  Google Scholar 

  47. Zhou, H. C. J.; Kitagawa, S. Metal-organic frameworks (MOFs). Chem. Soc. Rev. 2014, 43, 5415–5418.

    Article  CAS  Google Scholar 

  48. Li, J. R.; Kuppler, R. J.; Zhou, H. C. Selective gas adsorption and separation in metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1477–1504.

    Article  CAS  Google Scholar 

  49. Sánchez-Laínez, J.; Veiga, A.; Zornoza, B.; Balestra, S. R. G.; Hamad, S.; Ruiz-Salvador, A. R.; Calero, S.; Téllez, C.; Coronas, J. Tuning the separation properties of zeolitic imidazolate framework core-shell structures via post-synthetic modification. J. Mater. Chem. A 2017, 5, 25601–25608.

    Article  Google Scholar 

  50. Gomes, M. C.; Pison, L.; Červinka, C.; Padua, A. Porous ionic liquids or liquid metal-organic frameworks. Angew. Chem., Int. Ed. 2018, 57, 11909–11912.

    Article  Google Scholar 

  51. Atilhan, M.; Cincotti, A.; Aparicio, S. Nanoscopic characterization of type II porous liquid and its use for CO2 absorption from molecular simulation. J. Mol. Liq. 2021, 330, 115660.

    Article  CAS  Google Scholar 

  52. Zhang, H.; Dasbiswas, K.; Ludwig, N. B.; Han, G.; Lee, B.; Vaikuntanathan, S.; Talapin, D. V. Stable colloids in molten inorganic salts. Nature 2017, 542, 328–331.

    Article  CAS  Google Scholar 

  53. Liu, H.; Pan, Y.; Liu, B.; Sun, C. Y.; Guo, P.; Gao, X. T.; Yang, L. Y.; Ma, Q. L.; Chen, G. J. Tunable integration of absorption-membrane-adsorption for efficiently separating low boiling gas mixtures near normal temperature. Sci. Rep. 2016, 6, 21114.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge use of facilities within the Monash X-ray Platform and Monash Centre for Electron Microscopy.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Stefan J. D. Smith, Xavier Mulet or Matthew R. Hill.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahdavi, H., Zhang, H., Macreadie, L.K. et al. Underlying solvent-based factors that influence permanent porosity in porous liquids. Nano Res. 15, 3533–3538 (2022). https://doi.org/10.1007/s12274-021-3862-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3862-5

Keywords

Navigation