Skip to main content
Log in

Constructing ultrastable electrode/electrolyte interface for rapid potassium ion storage capability via salt chemistry and interfacial engineering

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Conversion/alloying anode materials exhibiting high K storage capacities suffer from large volume variations and unstable electrode/electrolyte interfaces upon cycling. Herein, taking SnS/reduced graphene oxide (SnS/rGO) anodes as an example, the electrochemical performance of SnS/rGO could significantly be improved via employing potassium bis(fluorosulfonyl)imide (KFSI) salt in electrolytes and ultrathin TiO2 coating. KF-rich inorganic layer was demonstrated to help form robust SEI layer, which could suppress the side reactions to increase the Coulombic efficiency. The formed potassiated KxTiO2 coating layer was constructed to boost charge transfer capability and K-ion diffusion kinetics. The as-prepared SnS/rGO@TiO2-20 electrode in KFSI electrolyte delivers the high CE of 99.1% and 424 mAh·g−1 after 200 cycles with an ultrahigh capacity retention of 98.5%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.

    Article  CAS  Google Scholar 

  2. Larcher, D.; Tarascon, J. M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 2015, 7, 19–29.

    Article  CAS  Google Scholar 

  3. Olivetti, E. A.; Ceder, G.; Gaustad, G. G.; Fu, X. K. Lithium-ion battery supply chain considerations: Analysis of potential bottlenecks in critical metals. Joule 2017, 1, 229–243.

    Article  Google Scholar 

  4. Li, M.; Lu, J.; Chen, Z. W.; Amine, K. 30 years of lithium-ion batteries. Adv. Mater. 2018, 30, 1800561.

    Article  Google Scholar 

  5. Zhang, W.; Hu, C.; Guo, Z.; Dai, L. High-performance K-CO2 batteries based on metal-free carbon electrocatalysts. Angew. Chem., Int. Ed. 2020, 59, 3470–3474.

    Article  CAS  Google Scholar 

  6. Su, D. W.; McDonagh, A.; Qiao, S. Z.; Wang, G. X. High-capacity aqueous potassium-ion batteries for large-scale energy storage. Adv. Mater. 2017, 29, 1604007.

    Article  Google Scholar 

  7. Zhang, W. C.; Liu, Y. J.; Guo, Z. P. Approaching high-performance potassium-ion batteries via advanced design strategies and engineering. Sci. Adv. 2019, 5, eaav7412.

    Article  CAS  Google Scholar 

  8. Chong, S.; Chen, Y. Z.; Zheng, Y.; Tan, Q.; Shu, C. Y.; Liu, Y. N.; Guo, Z. P. Potassium ferrous ferricyanide nanoparticles as a high capacity and ultralong life cathode material for nonaqueous potassium-ion batteries. J. Mater. Chem. A 2017, 5, 22465–22471.

    Article  CAS  Google Scholar 

  9. Wang, B. Q.; Han, Y.; Wang, X.; Bahlawane, N.; Pan, H. G.; Yan, M.; Jiang, Y. Z. Prussian blue analogs for rechargeable batteries. Iscience 2018, 3, 110–133.

    Article  CAS  Google Scholar 

  10. Wang, X. P.; Xu, X. M.; Niu, C. J.; Meng, J. S.; Huang, M.; Liu, X.; Liu, Z.; Mai, L. Q. Earth abundant Fe/Mn-based layered oxide interconnected nanowires for advanced K-ion full batteries. Nano Lett. 2017, 17, 544–550.

    Article  CAS  Google Scholar 

  11. Hironaka, Y.; Kubota, K.; Komaba, S. P2-and P3-KxCoO2 as an electrochemical potassium intercalation host. Chem. Commun. 2017, 53, 3693–3696.

    Article  CAS  Google Scholar 

  12. Xue, L. G.; Li, Y. T.; Gao, H. C.; Zhou, W. D.; Lü, X. J.; Kaveevivitchai, W.; Manthiram, A.; Goodenough, J. B. Low-cost high-energy potassium cathode. J. Am. Chem. Soc. 2017, 139, 2164–2167.

    Article  CAS  Google Scholar 

  13. Jian, Z. L.; Luo, W.; Ji, X. L. Carbon electrodes for K-ion batteries. J. Am. Chem. Soc. 2015, 137, 11566–11569.

    Article  CAS  Google Scholar 

  14. Wang, X. P.; Han, K.; Qin, D. D.; Li, Q.; Wang, C. Y.; Niu, C. J.; Mai, L. Q. Polycrystalline soft carbon semi-hollow microrods as anode for advanced K-ion full batteries. Nanoscale 2017, 9, 18216–18222.

    Article  CAS  Google Scholar 

  15. Chen, C. J.; Wang, Z. G.; Zhang, B.; Miao, L.; Cai, J.; Peng, L. F.; Huang, Y. Y.; Jiang, J. J.; Huang, Y. H.; Zhang, L. N. et al. Nitrogen-rich hard carbon as a highly durable anode for high-power potassium-ion batteries. Energy Stor. Mater. 2017, 8, 161–168.

    Google Scholar 

  16. Gao, X. R.; Xing, Z.; Li, Z. J.; Dong, X. Y.; Ju, Z. C.; Guo, C. L. A review on recent advances in carbon aerogels: Their preparation and use in alkali-metal ion batteries. New Carbon Mater. 2020, 35, 486–507.

    Article  Google Scholar 

  17. Yang, J. L.; Ju, Z. C.; Jiang, Y.; Xing, Z.; Xi, B. J.; Feng, J. K.; Xiong, S. L. Enhanced capacity and rate capability of nitrogen/oxygen dual-doped hard carbon in capacitive potassium-ion storage. Adv. Mater. 2018, 30, 1700104.

    Article  Google Scholar 

  18. He, H. N.; Huang, D.; Tang, Y. G.; Wang, Q.; Ji, X. B.; Wang, H. Y.; Guo, Z. P. Tuning nitrogen species in three-dimensional porous carbon via phosphorus doping for ultra-fast potassium storage. Nano Energy 2019, 57, 728–736.

    Article  CAS  Google Scholar 

  19. Ding, H. B.; Zhou, J.; Rao, A. M.; Lu, B. G. Cell-like-carbon-microspheres for robust potassium anode. Natl. Sci. Rev. 2020, nwaa276.

  20. Lakshmi, V.; Chen, Y.; Mikhaylov, A.; Medvedev, A. G.; Sultana, I.; Rahman, M. M.; Lev, O.; Prikhodchenko, P. V.; Glushenkov, A. M. Nanocrystalline SnS2 coated onto reduced graphene oxide: Demonstrating the feasibility of a non-graphitic anode with sulfide chemistry for potassium-ion batteries. Chem. Commun. 2017, 53, 8272–8275.

    Article  CAS  Google Scholar 

  21. Gao, H.; Zhou, T. F.; Zheng, Y.; Zhang, Q.; Liu, Y. Q.; Chen, J.; Liu, H. K.; Guo, Z. P. CoS quantum dot nanoclusters for high-energy potassium-ion batteries. Adv. Funct. Mater. 2017, 27, 1702634.

    Article  Google Scholar 

  22. Zhao, Y.; Zhu, J. J.; Ong, S. J. H.; Yao, Q. Q.; Shi, X. L.; Hou, K.; Xu, Z. J.; Guan, L. H. High-rate and ultralong cycle-life potassium ion batteries enabled by in situ engineering of yolk-shell FeS2@C structure on graphene matrix. Adv. Energy Mater. 2018, 8, 1802565.

    Article  Google Scholar 

  23. Huang, K. S.; Xing, Z.; Wang, L. C.; Wu, X.; Zhao, W.; Qi, X. J.; Wang, H.; Ju, Z. C. Direct synthesis of 3D hierarchically porous carbon/Sn composites via in situ generated NaCl crystals as templates for potassium-ion batteries anode. J. Mater. Chem. A 2018, 6, 434–142.

    Article  CAS  Google Scholar 

  24. Zheng, J.; Yang, Y.; Fan, X. L.; Ji, G. B.; Ji, X.; Wang, H. Y.; Hou, S.; Zachariah, M. R.; Wang, C. S. Extremely stable antimony-carbon composite anodes for potassium-ion batteries. Energy Environ. Sci. 2019, 12, 615–623.

    Article  CAS  Google Scholar 

  25. Zhou, J. W.; Liu, Y.; Zhang, S. L.; Zhou, T. F.; Guo, Z. P. Metal chalcogenides for potassium storage. InfoMat 2020, 2, 437–465.

    Article  CAS  Google Scholar 

  26. Li, D. P.; Sun, Q.; Zhang, Y. M.; Chen, L. N.; Wang, Z. P.; Liang, Z.; Si, P. C.; Ci, L. J. Surface-confined SnS2@C@rGO as high-performance anode materials for sodium- and potassium-ion batteries. ChemSusChem 2019, 12, 2689–2700.

    Article  CAS  Google Scholar 

  27. Li, D. P.; Dai, L. N.; Ren, X. H.; Ji, F. J.; Sun, Q.; Zhang, Y. M.; Ci, L. J. Foldable potassium-ion batteries enabled by free-standing and flexible SnS2@C nanofibers. Energy Environ. Sci. 2021, 14, 424–436.

    Article  CAS  Google Scholar 

  28. Sun, Q.; Li, D. P.; Dai, L. N.; Liang, Z.; Ci, L. J. Structural engineering of SnS2 encapsulated in carbon nanoboxes for high-performance sodium/potassium-ion batteries anodes. Small 2020, 16, 2005023.

    Article  CAS  Google Scholar 

  29. Zeng, C.; Xie, F. X.; Yang, X. F.; Jaroniec, M.; Zhang, L.; Qiao, S. Z. Ultrathin titanate nanosheets/graphene films derived from confined transformation for excellent Na/K ion storage. Angew. Chem., Int. Ed. 2018, 57, 8540–8544.

    Article  CAS  Google Scholar 

  30. Fan, L.; Lin, K. R.; Wang, J.; Ma, R. F.; Lu, B. G. A nonaqueous potassium-based battery-supercapacitor hybrid device. Adv. Mater. 2018, 30, 1800804.

    Article  Google Scholar 

  31. Zhang, Q.; Mao, J. F.; Pang, W. K.; Zheng, T.; Sencadas, V.; Chen, Y. Z.; Liu, Y. J.; Guo, Z. P. Boosting the potassium storage performance of alloy-based anode materials via electrolyte salt chemistry. Adv. Energy Mater. 2018, 8, 1703288.

    Article  Google Scholar 

  32. Zhang, W. C.; Pang, W. K.; Sencadas, V.; Guo, Z. P. Understanding High-Energy-Density Sn4P3 Anodes for Potassium-Ion Batteries. Joule 2018, 2, 1534–1547.

    Article  CAS  Google Scholar 

  33. Gu, M. Y.; Fan, L.; Zhou, J.; Rao, A. M.; Lu, B. G. Regulating solvent molecule coordination with KPF6 for superstable graphite potassium anodes. ACS Nano 2021, 15, 9167–9175.

    Article  CAS  Google Scholar 

  34. Liu, Q.; Rao, A. M.; Han, X.; Lu, B. G. Artificial SEI for superhighperformance K-graphite anode. Adv. Sci. 2021, 8, 2003639.

    Article  CAS  Google Scholar 

  35. Zhao, E. B.; Borodin, O.; Gao, X. S.; Lei, D. N.; Xiao, Y. R.; Ren, X. L.; Fu, W. B.; Magasinski, A.; Turcheniuk, K.; Yushin, G. Lithium-iron (III) fluoride battery with double surface protection. Adv. Energy Mater. 2018, 8, 1800721.

    Article  Google Scholar 

  36. Ren, W. N.; Zhou, W. W.; Zhang, H. F.; Cheng, C. W. ALD TiO2-coated flower-like MoS2 nanosheets on carbon cloth as sodium ion battery anode with enhanced cycling stability and rate capability. ACS Appl. Mater. Interfaces 2017, 9, 487–495.

    Article  CAS  Google Scholar 

  37. Zhang, Y. J.; Lu, J.; Shen, S. L.; Xu, H. R.; Wang, Q. B. Ultralarge single crystal SnS rectangular nanosheets. Chem. Commun. 2011, 47, 5226–5228.

    Article  CAS  Google Scholar 

  38. Zhou, T. F.; Pang, W. K.; Zhang, C. F.; Yang, J. P.; Chen, Z. X.; Liu, H. K.; Guo, Z. P. Enhanced sodium-ion battery performance by structural phase transition from two-dimensional hexagonal-SnS2 to orthorhombic-SnS. ACS Nano 2014, 8, 8323–8333.

    Article  CAS  Google Scholar 

  39. Xiong, X. H.; Yang, C. H.; Wang, G. H.; Lin, Y. W.; Ou, X.; Wang, J. H.; Zhao, B. T.; Liu, M. L.; Lin, Z.; Huang, K. SnS nanoparticles electrostatically anchored on three-dimensional N-doped graphene as an active and durable anode for sodium-ion batteries. Energy Environ. Sci. 2017, 10, 1757–1763.

    Article  CAS  Google Scholar 

  40. Mao, M. L.; Yan, F. L.; Cui, C. Y.; Ma, J. M.; Zhang, M.; Wang, T. H.; Wang, C. S. Pipe-wire TiO2-Sn@carbon nanofibers paper anodes for lithium and sodium ion batteries. Nano Lett. 2017, 17, 3830–3836.

    Article  CAS  Google Scholar 

  41. Biesinger, M. C.; Lau, L. W. M.; Gerson, A. R.; Smart, R. S. C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl. Surf. Sci. 2010, 257, 887–898.

    Article  CAS  Google Scholar 

  42. Cheng, N.; Zhao, J. G.; Fan, L.; Liu, Z. M.; Chen, S. H.; Ding, H. B.; Yu, X. Z.; Liu, Z. G.; Lu, B. G. Sb-MOFs derived Sb nanoparticles@porous carbon for high performance potassium-ion batteries anode. Chem. Commun. 2019, 55, 12511–12514.

    Article  CAS  Google Scholar 

  43. Fang, L. Z.; Xu, J.; Sun, S.; Lin, B. W.; Guo, Q. B.; Luo, D.; Xia, H. Few-layered tin sulfide nanosheets supported on reduced graphene oxide as a high-performance anode for potassium-ion batteries. Small 2019, 15, 1804806.

    Article  Google Scholar 

  44. Ge, J. M.; Wang, B.; Wang, J.; Zhang, Q. F.; Lu, B. G. Nature of FeSe2/N-C anode for high performance potassium ion hybrid capacitor. Adv. Energy Mater. 2020, 10, 1903277.

    Article  CAS  Google Scholar 

  45. Xiong, P. X.; Wu, J. X.; Zhou, M. F.; Xu, Y. H. Bismuth-antimony alloy nanoparticle@porous carbon nanosheet composite anode for high-performance potassium-ion batteries. ACS Nano 2020, 14, 1018–1026.

    Article  CAS  Google Scholar 

  46. Yang, C.; Feng, J. R.; Lv, F.; Zhou, J. H.; Lin, C. F.; Wang, K.; Zhang, Y. L.; Yang, Y.; Wang, W.; Li, J. B. et al. Metallic graphene-like VSe2 ultrathin nanosheets: Superior potassium-ion storage and their working mechanism. Adv. Mater. 2018, 30, 1800036.

    Article  Google Scholar 

  47. Zhang, L.; Gu, X.; Mao, X. N.; Wen, S.; Dai, P. C.; Li, L. J.; Liu, D. D.; Zhao, X. B. Boosting fast and stable potassium storage of iron selenide/carbon nanocomposites by electrolyte salt and solvent chemistry. J. Power Sources 2021, 486, 229373.

    Article  CAS  Google Scholar 

  48. Gu, X.; Zhang, L.; Zhang, W. C.; Liu, S. L.; Wen, S.; Mao, X. N.; Dai, P. C.; Li, L. J.; Liu, D. D.; Zhao, X. B. et al. A CoSe-C@C core-shell structure with stable potassium storage performance realized by an effective solid electrolyte interphase layer. J. Mater. Chem. A 2021, 9, 11397–11404.

    Article  CAS  Google Scholar 

  49. Fan, L.; Ma, R. F.; Zhang, Q. F.; Jia, X. X.; Lu, B. G. Graphite anode for a potassium-ion battery with unprecedented performance. Angew. Chem., Int. Ed. 2019, 58, 10500–10505.

    Article  CAS  Google Scholar 

  50. Philippe, B.; Dedryvere, R.; Gorgoi, M.; Rensmo, H.; Gonbeau, D.; Edstrom, K. Improved performances of nanosilicon electrodes using the salt LiFSI: A photoelectron spectroscopy study. J. Am. Chem. Soc. 2013, 135, 9829–9842.

    Article  CAS  Google Scholar 

  51. Fan, L.; Chen, S. H.; Ma, R. F.; Wang, J.; Wang, L. L.; Zhang, Q. F.; Zhang, E. J.; Liu, Z. M.; Lu, B. G. Ultrastable potassium storage performance realized by highly effective solid electrolyte interphase layer. Small 2018, 14, 1801806.

    Article  Google Scholar 

  52. Zhang, W. C.; Mao, J. F.; Li, S.; Chen, Z. X.; Guo, Z. P. Phosphorus-based alloy materials for advanced potassium-ion battery anode. J. Am. Chem. Soc. 2017, 139, 3316–3319.

    Article  CAS  Google Scholar 

  53. Han, X. G.; Liu, Y.; Jia, Z.; Chen, Y. C.; Wan, J. Y.; Weadock, N.; Gaskell, K. J.; Li, T.; Hu, L. B. Atomic-layer-deposition oxide nanoglue for sodium ion batteries. Nano Lett. 2014, 14, 139–147.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for financial support from the Fundamental Research Funds for the Central Universities (Nos. 19CX05002A and 17CX02039A), the Project of Science and Technology of Chongzuo City (FA2020008), the Key Research and Development Plan of Shandong Province (2018GGX102017), the New Faculty Start-up Funding in the China University of Petroleum (East China) (YJ201601023), and the Special Project Fund of “Taishan Scholars” of Shandong Province (ts201511017).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin Gu, Wenchao Zhang or Xuebo Zhao.

Electronic Supplementary Material

12274_2021_3830_MOESM1_ESM.pdf

Constructing ultrastable electrode/electrolyte interface for rapid potassium ion storage capability via salt chemistry and interfacial engineering

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, S., Gu, X., Ding, X. et al. Constructing ultrastable electrode/electrolyte interface for rapid potassium ion storage capability via salt chemistry and interfacial engineering. Nano Res. 15, 2083–2091 (2022). https://doi.org/10.1007/s12274-021-3830-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3830-0

Keywords

Navigation