Skip to main content
Log in

Hybridized triboelectric-electromagnetic nanogenerators and solar cell for energy harvesting and wireless power transmission

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Energy harvesting and power transmission is a significant challenge for the self-powered technologies towards mobile electronic devices. Here, we propose a hybridized energy harvester to complement each other’s strengths for simultaneously scavenging multiple types of energy and then wirelessly transmit the power. The harvester consists of electromagnetic-triboelectric nanogenerator units for collecting rotational energy and a commercial water-proof flexible solar cell. At a rotation rate of 500 rpm, the output current of electromagnetic-triboelectric nanogenerator units can reach about 630 mA through energy management. Moreover, the power harvested by hybridized energy harvester can be wirelessly transmitted up to a distance of about 100 cm in real time to charge mobile phone, anemometer, and hygrometer based on self-resonant coils. The hybridized energy harvester with wireless power transmission has potential applications in large-scale energy collection, long-distance wireless power transmission and sustainably driving mobile electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Van Neste, C. W.; Hawk, J. E.; Phani, A.; Backs, J. A. J.; Hull, R.; Abraham, T.; Glassford, S. J.; Pickering, A. K.; Thundat, T. Single-contact transmission for the quasi-wireless delivery of power over large surfaces. Wirel. Power Transf. 2014, 1, 75–82.

    Article  Google Scholar 

  2. Kurs, A.; Karalis, A.; Moffatt, R.; Joannopoulos, J. D.; Fisher, P.; Soljacic, M. Wireless power transfer via strongly coupled magnetic resonances. Science 2007, 317, 83–86.

    Article  CAS  Google Scholar 

  3. Van Neste, C. W.; Phani, A.; Larocque, A.; Hawk, J. E.; Kalra, R.; Banaag, M. J.; Wu, M.; Thundat, T. Quarter wavelength resonators for use in wireless capacitive power transfer. In 2017 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (WoW), Chongqing, China, 2017, pp 229–234.

  4. Zhang, X.; Zhao, Y. P.; Ho, S. L.; Fu, W. N. Analysis of wireless power transfer system based on 3-D finite-element method including displacement current. IEEE Trans. Magnet. 2012, 48, 3692–3695.

    Article  Google Scholar 

  5. Onar, O. C.; Miller, J. M.; Campbell, S. L.; Coomer, C.; White, C. P.; Seiber, L. E. A novel wireless power transfer for in-motion EV/PHEV charging. In 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, 2013, pp 3073–3080.

  6. Jeong, C. K.; Han, J. H.; Palneedi, H.; Park, H.; Hwang, G. T.; Joung, B.; Kim, S. G.; Shin, H. J.; Kang, I. S.; Ryu, J. et al. Comprehensive biocompatibility of nontoxic and high-output flexible energy harvester using lead-free piezoceramic thin film. APL Mater. 2017, 5, 074102.

    Article  Google Scholar 

  7. Shao, H. Y.; Wen, Z.; Cheng, P.; Sun, N.; Shen, Q. Q.; Zhou, C. J.; Peng, M. F.; Yang, Y. Q.; Xie, X. K.; Sun, X. H. Multifunctional power unit by hybridizing contact-separate triboelectric nanogenerator, electromagnetic generator and solar cell for harvesting blue energy. Nano Energy 2017, 39, 608–615.

    Article  CAS  Google Scholar 

  8. Wang, Z. L. On Maxwell’s displacement current for energy and sensors: The origin of nanogenerators. Mater. Today 2017, 20, 74–82.

    Article  Google Scholar 

  9. Wen, Z.; Yeh, M. H.; Guo, H. Y.; Wang, J.; Zi, Y. L.; Xu, W. D.; Deng, J. N.; Zhu, L.; Wang, X.; Hu, C. G. et al. Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors. Sci. Adv. 2016, 2, e1600097.

    Article  Google Scholar 

  10. Chen, J.; Huang, Y.; Zhang, N. N.; Zou, H. Y.; Liu, R. Y.; Tao, C. Y.; Fan, X.; Wang, Z. L. Micro-cable structured textile for simultaneously harvesting solar and mechanical energy. Nat. Energy 2016, 1, 16138.

    Article  CAS  Google Scholar 

  11. Liu, Y. D.; Ren, L.; Qi, X.; Yang, L. W.; Hao, G. L.; Li, J.; Wei, X. L.; Zhong, J. X. Preparation, characterization and photoelectrochemical property of ultrathin MoS2 nanosheets via hydrothermal intercalation and exfoliation route. J. Alloys Compd. 2013, 571, 37–42.

    Article  CAS  Google Scholar 

  12. Yang, Y.; Zhang, H. L.; Liu, Y.; Lin, Z. H.; Lee, S.; Lin, Z. Y.; Wong, C. P.; Wang, Z. L. Silicon-based hybrid energy cell for self-powered electrodegradation and personal electronics. ACS Nano 2013, 7, 2808–2813.

    Article  CAS  Google Scholar 

  13. Yang, Y.; Zhang, H. L.; Zhu, G.; Lee, S.; Lin, Z. H.; Wang, Z. L. Flexible hybrid energy cell for simultaneously harvesting thermal, mechanical, and solar energies. ACS Nano 2013, 7, 785–790.

    Article  CAS  Google Scholar 

  14. Wang, S. H.; Lin, L.; Wang, Z. L. Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics. Nano Lett. 2012, 12, 6339–6346.

    Article  CAS  Google Scholar 

  15. Tian, J. W.; Chen, X. Y.; Wang, Z. L. Environmental energy harvesting based on triboelectric nanogenerators. Nanotechnology 2020, 31, 242001.

    Article  CAS  Google Scholar 

  16. Liu, Z.; Li, H.; Shi, B. J.; Fan, Y. B.; Wang, Z. L.; Li, Z. Wearable and implantable triboelectric nanogenerators. Adv. Funct. Mater. 2019, 29, 1808820.

    Article  Google Scholar 

  17. Wang, Z. L.; Jiang, T.; Xu, L. Toward the blue energy dream by triboelectric nanogenerator networks. Nano Energy 2017, 39, 9–23.

    Article  Google Scholar 

  18. Wu, C. S.; Wang, A. C.; Ding, W. B.; Guo, H. Y.; Wang, Z. L. Triboelectric nanogenerator: A foundation of the energy for the new era. Adv. Energy Mater. 2019, 9, 1802906.

    Article  Google Scholar 

  19. Zi, Y. L.; Guo, H. Y.; Wen, Z.; Yeh, M. H.; Hu, C. G.; Wang, Z. L. Harvesting low-frequency (< 5 Hz) irregular mechanical energy: A possible killer application of triboelectric nanogenerator. ACS Nano 2016, 10, 4797–4805.

    Article  CAS  Google Scholar 

  20. Jin, L.; Chen, J.; Zhang, B. B.; Deng, W. L.; Zhang, L.; Zhang, H. T.; Huang, X.; Zhu, M. H.; Yang, W. Q.; Wang, Z. L. Self-powered safety helmet based on hybridized nanogenerator for emergency. ACS Nano 2016, 10, 7874–7881.

    Article  CAS  Google Scholar 

  21. Sun, J. Y.; Yang, A. P.; Zhao, C. C.; Liu, F.; Li, Z. Recent progress of nanogenerators acting as biomedical sensors in vivo. Sci. Bull. 2019, 64, 1336–1347.

    Article  Google Scholar 

  22. Wang, S. H.; Lin, L.; Wang, Z. L. Triboelectric nanogenerators as self-powered active sensors. Nano Energy 2015, 11, 436–462.

    Article  CAS  Google Scholar 

  23. Wang, Z. L.; Chen, J.; Lin, L. Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 2015, 8, 2250–2282.

    Article  CAS  Google Scholar 

  24. Pu, X. J.; Guo, H. Y.; Chen, J.; Wang, X.; Xi, Y.; Hu, C. G.; Wang, Z. L. Eye motion triggered self-powered mechnosensational communication system using triboelectric nanogenerator. Sci. Adv. 2017, 3, e1700694.

    Article  Google Scholar 

  25. Cheng, X. L.; Meng, B.; Zhang, X. S.; Han, M. D.; Su, Z. M.; Zhang, H. X. Wearable electrode-free triboelectric generator for harvesting biomechanical energy. Nano Energy 2015, 12, 19–25.

    Article  CAS  Google Scholar 

  26. Wu, C. S.; Jiang, P.; Li, W.; Guo, H. Y.; Wang, J.; Chen, J.; Prausnitz, M. R.; Wang, Z. L. Self-powered iontophoretic transdermal drug delivery system driven and regulated by biomechanical motions. Adv. Funct. Mater. 2019, 30, 1907378.

    Article  Google Scholar 

  27. Yang, W. Q.; Chen, J.; Jing, Q. S.; Yang, J.; Wen, X. N.; Su, Y. J.; Zhu, G.; Bai, P.; Wang, Z. L. 3D stack integrated triboelectric nanogenerator for harvesting vibration energy. Adv. Funct. Mater. 2014, 24, 4090–4096.

    Article  CAS  Google Scholar 

  28. Xiao, X.; Zhang, X. Q.; Wang, S. Y.; Ouyang, H.; Chen, P. F.; Song, L. G.; Yuan, H. C.; Ji, Y. L.; Wang, P. H.; Li, Z. et al. Honeycomb structure inspired triboelectric nanogenerator for highly effective vibration energy harvesting and self-powered engine condition monitoring. Adv. Energy Mater. 2019, 9, 1902460.

    Article  CAS  Google Scholar 

  29. Wang, X. F.; Niu, S. M.; Yi, F.; Yin, Y. J.; Hao, C. L.; Dai, K. R.; Zhang, Y.; You, Z.; Wang, Z. L. Harvesting ambient vibration energy over a wide frequency range for self-powered electronics. ACS Nano 2017, 11, 1728–1735.

    Article  CAS  Google Scholar 

  30. Wang, X.; Wen, Z.; Guo, H. Y.; Wu, C. S.; He, X.; Lin, L.; Cao, X.; Wang, Z. L. Fully packaged blue energy harvester by hybridizing a rolling triboelectric nanogenerator and an electromagnetic generator. ACS Nano 2016, 10, 11369–11376.

    Article  CAS  Google Scholar 

  31. Tang, W.; Jiang, T.; Fan, F. R.; Yu, A. F.; Zhang, C.; Cao, X.; Wang, Z. L. Liquid-metal electrode for high-performance triboelectric nanogenerator at an instantaneous energy conversion efficiency of 70. 6%. Adv. Funct. Mater. 2015, 25, 3718–3725.

    Article  CAS  Google Scholar 

  32. Cao, R.; Zhou, T.; Wang, B.; Yin, Y. Y.; Yuan, Z. Q.; Li, C. J.; Wang, Z. L. Rotating-sleeve triboelectric-electromagnetic hybrid nanogenerator for high efficiency of harvesting mechanical energy. ACS Nano 2017, 11, 8370–8378.

    Article  CAS  Google Scholar 

  33. Qian, J. G.; Jing, X. J. Wind-driven hybridized triboelectric-electromagnetic nanogenerator and solar cell as a sustainable power unit for self-powered natural disaster monitoring sensor networks. Nano Energy 2018, 52, 78–87.

    Article  CAS  Google Scholar 

  34. Wang, P. H.; Liu, R. Y.; Ding, W. B.; Zhang, P.; Pan, L.; Dai, G. Z.; Zou, H. Y.; Dong, K.; Xu, C.; Wang, Z. L. Complementary electromagnetic-triboelectric active sensor for detecting multiple mechanical triggering. Adv. Funct. Mater. 2018, 28, 1705808.

    Article  Google Scholar 

  35. Zhang, C.; Tang, W.; Han, C. B.; Fan, F. R.; Wang, Z. L. Theoretical comparison, equivalent transformation, and conjunction operations of electromagnetic induction generator and triboelectric nanogenerator for harvesting mechanical energy. Adv. Mater. 2014, 26, 3580–3591.

    Article  CAS  Google Scholar 

  36. Chen, Y. D.; Cheng, Y.; Jie, Y.; Cao, X.; Wang, N.; Wang, Z. L. Energy harvesting and wireless power transmission by a hybridized electromagnetic-triboelectric nanogenerator. Energy Environ. Sci. 2019, 12, 2678–2684.

    Article  Google Scholar 

  37. Marincic, A. S. Nikola tesla and the wireless transmission of energy. IEEE Trans. Power Appar. Syst. 1982, PAS-101, 4064–4068.

    Article  Google Scholar 

  38. Shu, X. J.; Zhang, B. Single-wire electric-field coupling power transmission using nonlinear parity-time-symmetric model with coupled-mode theory. Energies 2018, 11, 532.

    Article  Google Scholar 

  39. Kurs, A.; Karalis, A.; Moffatt, R.; Joannopoulos, J. D.; Fisher, P.; Soljačić, M. Wireless power transfer via strongly coupled magnetic resonances. Science 2007, 317, 83–86.

    Article  CAS  Google Scholar 

  40. Hui, S. Y. R. Magnetic resonance for wireless power transfer [a look back]. IEEE Power Electron. Mag. 2016, 3, 14–31.

    Article  Google Scholar 

  41. Thomas, E. M.; Heebl, J. D.; Pfeiffer, C.; Grbic, A. A power link study of wireless non-radiative power transfer systems using resonant shielded loops. IEEE Trans. Circuits Syst. I: Regular Papers 2012, 59, 2125–2136.

    Article  Google Scholar 

  42. Jie, Y.; Ma, J. M.; Chen, Y. D.; Cao, X.; Wang, N.; Wang, Z. L. Efficient delivery of power generated by a rotating triboelectric nanogenerator by conjunction of wired and wireless transmissions using maxwell’s displacement currents. Adv. Energy Mater. 2018, 8, 1802084.

    Article  Google Scholar 

  43. Zhu, G.; Chen, J.; Liu, Y.; Bai, P.; Zhou, Y. S.; Jing, Q. S.; Pan, C. F.; Wang, Z. L. Linear-grating triboelectric generator based on sliding electrification. Nano Lett. 2013, 13, 2282–2289.

    Article  CAS  Google Scholar 

  44. Zhu, G.; Bai, P.; Chen, J.; Wang, Z. L. Power-generating shoe insole based on triboelectric nanogenerators for self-powered consumer electronics. Nano Energy 2013, 2, 688–692.

    Article  CAS  Google Scholar 

  45. Zhu, G.; Chen, J.; Zhang, T. J.; Jing, Q. S.; Wang, Z. L. Radial-arrayed rotary electrification for high performance triboelectric generator. Nat. Commun. 2014, 5, 3426.

    Article  Google Scholar 

  46. Guo, Y. L.; Chen, Y. D.; Ma, J. M.; Zhu, H. R.; Cao, X.; Wang, N.; Wang, Z. L. Harvesting wind energy: A hybridized design of pinwheel by coupling triboelectrification and electromagnetic induction effects. Nano Energy 2019, 60, 641–648.

    Article  CAS  Google Scholar 

  47. Guo, H. Y.; Wen, Z.; Zi, Y. L.; Yeh, M. H.; Wang, J.; Zhu, L. P.; Hu, C. G.; Wang, Z. L. A water-proof triboelectric-electromagnetic hybrid generator for energy harvesting in harsh environments. Adv. Energy Mater. 2016, 6, 1501593.

    Article  Google Scholar 

  48. Hu, Y. F.; Yang, J.; Niu, S. M.; Wu, W. Z.; Wang, Z. L. Hybridizing triboelectrification and electromagnetic induction effects for high-efficient mechanical energy harvesting. ACS Nano 2014, 8, 7442–7450.

    Article  CAS  Google Scholar 

  49. Wang, H. S.; Jeong, C. K.; Seo, M. H.; Joe, D. J.; Han, J. H.; Yoon, J. B.; Lee, K. J. Performance-enhanced triboelectric nanogenerator enabled by wafer-scale nanogrates of multistep pattern downscaling. Nano Energy 2017, 35, 415–423.

    Article  CAS  Google Scholar 

  50. Fan, F. R.; Tang, W.; Yao, Y.; Luo, J. J.; Zhang, C.; Wang, Z. L. Complementary power output characteristics of electromagnetic generators and triboelectric generators. Nanotechnology 2014, 25, 135402.

    Article  Google Scholar 

  51. Zhang, B. B.; Chen, J.; Jin, L.; Deng, W. L.; Zhang, L.; Zhang, H. T.; Zhu, M. H.; Yang, W. Q.; Wang, Z. L. Rotating-disk-based hybridized electromagnetic-triboelectric nanogenerator for sustainably powering wireless traffic volume sensors. ACS Nano 2016, 10, 6241–6247.

    Article  CAS  Google Scholar 

  52. Tang, W.; Meng, B.; Zhang, H. X. Investigation of power generation based on stacked triboelectric nanogenerator. Nano Energy 2013, 2, 1164–1171.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the financial support from the National key R&D project from Minister of Science and Technology, China (Nos. 2016YFA0202702 and 2016YFA0202701), the Key Research Program of Frontier Sciences, CAS (ZDBS-LY-DQC025), the National Postdoctoral Program for Innovative Talents (No. BX20180081), and China Postdoctoral Science Foundation (No. 2019M650604). Patents have been filed to protect the reported inventions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xia Cao or Zhong Lin Wang.

Electronic Supplementary Material

12274_2021_3822_MOESM1_ESM.pdf

Hybridized triboelectric-electromagnetic nanogenerators and solar cell for energy harvesting and wireless power transmission

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Jie, Y., Zhu, J. et al. Hybridized triboelectric-electromagnetic nanogenerators and solar cell for energy harvesting and wireless power transmission. Nano Res. 15, 2069–2076 (2022). https://doi.org/10.1007/s12274-021-3822-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3822-0

Keywords

Navigation