Skip to main content
Log in

Inversion symmetry broken 2D SnP2S6 with strong nonlinear optical response

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Nowadays, realizing miniaturized nonlinear optical (NLO) device is crucial to meet the growing needs in on-chip nanophotonics as well as compact integrated devices. The strong optical nonlinearities, ultrafast photoexcitation dynamics, available exciton effects as well as without lattice matching make two-dimensional (2D) layered materials potential candidates for integrated and nano-scale NLO devices. Herein, a novel and inversion symmetry broken 2D layered SnP2S6 with strong second-harmonic and third-harmonic response has been reported for the first time. The second-order susceptibility (χ(2)) of SnP2S6 flakes can reach up to 4.06 × 10−9 m·V−1 under 810 nm excitation wavelength, which is around 1–2 orders of magnitude higher than that of most reported 2D materials. In addition, the NLO response of 2D SnP2S6 can break through the limitation of odd/even layers and exhibit broadband spectral response. Moreover, since the second-harmonic signal is closely related to structure variation, the second-harmonic response in 2D SnP2S6 is extremely sensitive to polarization angle and temperature, which is beneficial to some specific applications. The excellent NLO response in 2D SnP2S6 provides a new arena for realizing miniaturized NLO devices in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Autere, A.; Jussila, H.; Dai, Y. Y.; Wang, Y. D.; Lipsanen, H.; Sun, Z. P. Nonlinear optics with 2D layered materials. Adv. Mater. 2018, 30, 1705963.

    Article  Google Scholar 

  2. Keller, U. Recent developments in compact ultrafast lasers. Nature 2003, 424, 831–838.

    Article  CAS  Google Scholar 

  3. Bao, Q. L.; Zhang, H.; Wang, Y.; Ni, Z. H.; Yan, Y. L.; Shen, Z. X.; Loh, K. P.; Tang, D. Y. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater. 2009, 19, 3077–3083.

    Article  CAS  Google Scholar 

  4. Li, W.; Chen, B. G.; Meng, C.; Fang, W.; Xiao, Y.; Li, X. Y.; Hu, Z. F.; Xu, Y. X.; Tong, L. M.; Wang, H. Q. et al. Ultrafast all-optical graphene modulator. Nano Lett. 2014, 14, 955–959.

    Article  CAS  Google Scholar 

  5. You, J. W.; Bongu, S. R.; Bao, Q.; Panoiu, N. C. Nonlinear optical properties and applications of 2D materials: Theoretical and experimental aspects. Nanophotonics 2018, 8, 63–97.

    Article  Google Scholar 

  6. Wen, X. L.; Gong, Z. B.; Li, D. H. Nonlinear optics of two-dimensional transition metal dichalcogenides. InfoMat 2019, 1, 317–337.

    Article  CAS  Google Scholar 

  7. Li, D. W.; Xiong, W.; Jiang, L. J.; Xiao, Z. Y.; Golgir, H. R.; Wang, M. M.; Huang, X.; Zhou, Y. S.; Lin, Z.; Song, J. F. et al. Multimodal nonlinear optical imaging of MoS2 and MoS2-based van der Waals heterostructures. ACS Nano 2016, 10, 3766–3775.

    Article  CAS  Google Scholar 

  8. Dai, M. J.; Chen, H. Y.; Wang, F. K.; Hu, Y. X.; Wei, S.; Zhang, J.; Wang, Z. G.; Zhai, T. Y.; Hu, P. A. Robust piezo-phototronic effect in multilayer γ-InSe for high-performance self-powered flexible photodetectors. ACS Nano 2019, 13, 7291–7299.

    Article  CAS  Google Scholar 

  9. Qian, Q. K.; Zu, R.; Ji, Q. Q.; Jung, G. S.; Zhang, K. Y.; Zhang, Y.; Buehler, M. J.; Kong, J.; Gopalan, V.; Huang, S. X. Chirality-dependent second harmonic generation of MoS2 nanoscroll with enhanced efficiency. ACS Nano 2020, 14, 13333–13342.

    Article  CAS  Google Scholar 

  10. Heyn, C.; Klingbeil, M.; Strelow, C.; Stemmann, A.; Mendach, S.; Hansen, W. Single-dot spectroscopy of GaAs quantum dots fabricated by filling of self-assembled nanoholes. Nanoscale Res. Lett. 2010, 5, 1633.

    Article  CAS  Google Scholar 

  11. Witzens, J.; Baehr-Jones, T.; Hochberg, M. On-chip OPOs. Nat. Photonics 2010, 4, 10–12.

    Article  CAS  Google Scholar 

  12. Ngo, G. Q.; George, A.; Schock, R. T. K.; Tuniz, A.; Najafidehaghani, E.; Gan, Z. Y.; Geib, N. C.; Bucher, T.; Knopf, H.; Saravi, S. et al. Scalable functionalization of optical fibers using atomically thin semiconductors. Adv. Mater. 2020, 32, 2003826.

    Article  CAS  Google Scholar 

  13. Wang, F. K.; Luo, P.; Zhang, Y.; Huang, Y.; Zhang, Q. F.; Zhai, T. Y. Band structure engineered tunneling heterostructures for highperformance visible and near-infrared photodetection. Sci. China Mater. 2020, 63, 1537–1547.

    Article  CAS  Google Scholar 

  14. Dai, Y. Y.; Wang, Y. D.; Das, S.; Xue, H.; Bai, X. Y.; Hulkko, E.; Zhang, G. Y.; Yang, X. X.; Dai, Q.; Sun, Z. P. Electrical control of interband resonant nonlinear optics in monolayer MoS2. ACS Nano 2020, 14, 8442–8448.

    Article  CAS  Google Scholar 

  15. Liu, M.; Yin, X. B.; Ulin-Avila, E.; Geng, B. S.; Zentgraf, T.; Ju, L.; Wang, F.; Zhang, X. A graphene-based broadband optical modulator. Nature 2011, 474, 64–67.

    Article  CAS  Google Scholar 

  16. Wang, Y. D.; Wang, Y. W.; Chen, K. Q.; Qi, K.; Xue, T. Y.; Zhang, H.; He, J.; Xiao, S. Niobium carbide Mxenes with broad-band nonlinear optical response and ultrafast carrier dynamics. ACS Nano 2020, 14, 10492–10502.

    Article  CAS  Google Scholar 

  17. Low, T.; Chaves, A.; Caldwell, J. D.; Kumar, A.; Fang, N. X.; Avouris, P.; Heinz, T. F.; Guinea, F.; Martin-Moreno, L.; Koppens, F. Polaritons in layered two-dimensional materials. Nat. Mater. 2017, 16, 182–194.

    Article  CAS  Google Scholar 

  18. Wang, X. T.; Huang, L.; Peng, Y. T.; Huo, N. J.; Wu, K. D.; Xia, C. X.; Wei, Z. M.; Tongay, S.; Li, J. B. Enhanced rectification, transport property and photocurrent generation of multilayer ReSe2/MoS2 p-n heterojunctions. Nano Res. 2016, 9, 507–516.

    Article  CAS  Google Scholar 

  19. Autere, A.; Ryder, C. R.; Saynatjoki, A.; Karvonen, L.; Amirsolaimani, B.; Norwood, R. A.; Peyghambarian, N.; Kieu, K.; Lipsanen, H.; Hersam, M. C. et al. Rapid and large-area characterization of exfoliated black phosphorus using third-harmonic generation microscopy. J. Phys. Chem. Lett. 2017, 8, 1343–1350.

    Article  CAS  Google Scholar 

  20. Lu, S. B.; Miao, L. L.; Guo, Z. N.; Qi, X.; Zhao, C. J.; Zhang, H.; Wen, S. C.; Tang, D. Y.; Fan, D. Y. Broadband nonlinear optical response in multi-layer black phosphorus: An emerging infrared and mid-infrared optical material. Opt. Express 2015, 23, 11183–11194.

    Article  CAS  Google Scholar 

  21. Nasari, H.; Abrishamian, M. S. Electrically tunable, plasmon resonance enhanced, terahertz third harmonic generation via graphene. RSC Adv. 2016, 6, 50190–50200.

    Article  CAS  Google Scholar 

  22. Wang, J.; Hernandez, Y.; Lotya, M.; Coleman, J. N.; Blau, W. J. Broadband nonlinear optical response of graphene dispersions. Adv. Mater. 2009, 21, 2430–2435.

    Article  CAS  Google Scholar 

  23. Wu, R.; Zhang, Y. L.; Yan, S. C.; Bian, F.; Wang, W. L.; Bai, X. D.; Lu, X. H.; Zhao, J. M.; Wang, E. G. Purely coherent nonlinear optical response in solution dispersions of graphene sheets. Nano Lett. 2011, 11, 5159–5164.

    Article  CAS  Google Scholar 

  24. Martinez, A.; Sun, Z. P. Nanotube and graphene saturable absorbers for fibre lasers. Nat. Photonics 2013, 7, 842–845.

    Article  CAS  Google Scholar 

  25. Shi, J.; Yu, P.; Liu, F. C.; He, P.; Wang, R.; Qin, L.; Zhou, J. B.; Li, X.; Zhou, J. D.; Sui, X. Y. et al. 3R MoS2 with broken inversion symmetry: A promising ultrathin nonlinear optical device. Adv. Mater. 2017, 29, 1701486.

    Article  Google Scholar 

  26. Wang, T.; Chai, Y. Y.; Ma, D. K.; Chen, W.; Zheng, W. W.; Huang, S. M. Multidimensional CdS nanowire/CdIn2S4 nanosheet heterostructure for photocatalytic and photoelectrochemical applications. Nano Res. 2017, 10, 2699–2711.

    Article  CAS  Google Scholar 

  27. Liu, L. X.; Zhai, T. Y. Wafer-scale vertical van der waals heterostructures. InfoMat 2021, 3, 3–21.

    Article  Google Scholar 

  28. Säynätjoki, A.; Karvonen, L.; Rostami, H.; Autere, A.; Mehravar, S.; Lombardo, A.; Norwood, R. A.; Hasan, T.; Peyghambarian, N.; Lipsanen, H. et al. Ultra-strong nonlinear optical processes and trigonal warping in MoS2 layers. Nat. Commun. 2017, 8, 893.

    Article  Google Scholar 

  29. Lin, M. C.; Liu, P.; Wu, M. K.; Cheng, Y. H.; Liu, H.; Cho, K.; Wang, W. H.; Lu, F. Two-dimensional nanoporous metal chalcogenophosphates MP2X6 with high electron mobilities. Appl. Surf. Sci. 2019, 493, 1334–1339.

    Article  CAS  Google Scholar 

  30. Wang, Z.; Willett, R. D.; Laitinen, R. A.; Cleary, D. A. Synthesis and crystal structure of SnP2S6. Chem. Mater. 1995, 7, 856–858.

    Article  CAS  Google Scholar 

  31. Rushchanskii, K. Z.; Vysochanskii, Y. M.; Cajipe, V. B.; Bourdon, X. Influence of pressure on the structural, dynamical, and electronic properties of the SnP2S6 layered crystal. Phys. Rev. B 2006, 73, 115115.

    Article  Google Scholar 

  32. Wang, X. Z.; Du, K. Z.; Liu, W. W.; Hu, P.; Lu, X.; Xu, W. G.; Kloc, C.; Xiong, Q. H. Second-harmonic generation in quaternary atomically thin layered AgInP2S6 crystals. Appl. Phys. Lett. 2016, 109, 123103.

    Article  Google Scholar 

  33. Jing, Y.; Zhou, Z. P.; Zhang, J.; Huang, C. B.; Li, Y. F.; Wang, F. SnP2S6 monolayer: A promising 2D semiconductor for photocatalytic water splitting. Phys. Chem. Chem. Phys. 2019, 21, 21064–21069.

    Article  CAS  Google Scholar 

  34. Zhao, M. X.; Xia, W.; Wang, Y.; Luo, M.; Tian, Z.; Guo, Y. F.; Hu, W. D.; Xue, J. M. Nb2SiTe4: A stable narrow-gap two-dimensional material with ambipolar transport and mid-infrared response. ACS Nano 2019, 17, 10705–10710.

    Article  Google Scholar 

  35. Liang, Q. H.; Zheng, Y.; Du, C. F.; Luo, Y. B.; Zhao, J.; Ren, H.; Xu, J. W.; Yan, Q. Y. Asymmetric-layered tin thiophosphate: An emerging 2D ternary anode for high-performance sodium ion full cell. ACS Nano 2018, 12, 12902–12911.

    Article  CAS  Google Scholar 

  36. Vysochanskii, Y. M.; Baltrunas, D.; Grabar, A. A.; Mazeika, K.; Fedyo, K.; Sudavicius, A. Mössbauer 119Sn and XPS spectroscopy of Sn2P2S6 and SnP2S6 crystals. Phys. Status Solidi B 2009, 246, 1110–1117.

    Article  CAS  Google Scholar 

  37. Vysochanskii, Y. M.; Stephanovich, V. A.; Molnar, A. A.; Cajipe, V. B.; Bourdon, X. Raman spectroscopy study of the ferrielectric-paraelectric transition in layered CuInP2S6. Phys. Rev. B 1998, 58, 9119–9124.

    Article  CAS  Google Scholar 

  38. Wang, F. K.; Li, L. G.; Huang, W. J.; Li, L.; Jin, B.; Li, H. Q.; Zhai, T. Y. Submillimeter 2D Bi2Se3 flakes toward high-performance infrared photodetection at optical communication wavelength. Adv. Funct. Mater. 2018, 28, 1802707.

    Article  Google Scholar 

  39. Zobeiri, H.; Xu, S.; Yue, Y. N.; Zhang, Q. Y.; Xie, Y. S.; Wang, X. W. Effect of temperature on Raman intensity of nm-thick WS2: Combined effects of resonance Raman, optical properties, and interface optical interference. Nanoscale 2020, 12, 6064–6078.

    Article  CAS  Google Scholar 

  40. Luo, S. W.; Qi, X.; Yao, H.; Ren, X. H.; Chen, Q.; Zhong, J. X. Temperature-dependent Raman responses of the vapor-deposited tin selenide ultrathin flakes. J. Phys. Chem. C 2017, 121, 4674–4679.

    Article  CAS  Google Scholar 

  41. Wu, L. S.; Cong, C. X.; Shang, J. Z.; Yang, W. H.; Chen, Y.; Zhou, J. D.; Ai, W.; Wang, Y. L.; Feng, S.; Zhang, H. B. et al. Raman scattering investigation of twisted WS2/MoS2 heterostructures: Interlayer mechanical coupling versus charge transfer. Nano Res. 2021, 12, 2215–2223.

    Article  Google Scholar 

  42. Zhang, S.; Yang, J.; Xu, R. J.; Wang, F.; Li, W. F.; Ghufran, M.; Zhang, Y. W.; Yu, Z. F.; Zhang, G.; Qin, Q. H. et al. Extraordinary photoluminescence and strong temperature/angle-dependent Raman responses in few-layer phosphorene. ACS Nano 2014, 8, 9590–9596.

    Article  CAS  Google Scholar 

  43. Yan, R. S.; Simpson, J. R.; Bertolazzi, S.; Brivio, J.; Watson, M.; Wu, X. F.; Kis, A.; Luo, T. F.; Walker, A. R. H.; Xing, H. G. Thermal conductivity of monolayer molybdenum disulfide obtained from temperature-dependent Raman spectroscopy. ACS Nano 2014, 8, 986–993.

    Article  CAS  Google Scholar 

  44. Calizo, I.; Balandin, A. A.; Bao, W.; Miao, F.; Lau, C. N. Temperature dependence of the Raman spectra of graphene and graphene multilayers. Nano Lett. 2007, 7, 2645–2649.

    Article  CAS  Google Scholar 

  45. Jiang, T.; Liu, H. R.; Huang, D.; Zhang, S.; Li, Y. G.; Gong, X. G.; Shen, Y. R.; Liu, W. T.; Wu, S. W. Valley and band structure engineering of folded MoS2 bilayers. Nat. Nanotechnol. 2014, 9, 825–829.

    Article  CAS  Google Scholar 

  46. Liang, J.; Tu, T.; Chen, G. C.; Sun, Y. W.; Qiao, R. X.; Ma, H.; Yu, W. T.; Zhou, X.; Ma, C. J.; Gao, P. et al. Unveiling the fine structural distortion of atomically thin Bi2O2Se by third-harmonic generation. Adv. Mater. 2020, 32, 2002831.

    Article  CAS  Google Scholar 

  47. Jang, H.; Dhakal, K. P.; Joo, K. I.; Yun, W. S.; Shinde, S. M.; Chen, X.; Jeong, S. M.; Lee, S. W.; Lee, Z.; Lee, J. et al. Transient SHG imaging on ultrafast carrier dynamics of MoS2 nanosheets. Adv. Mater. 2018, 30, 1705190.

    Article  Google Scholar 

  48. Mak, K. F.; He, K. L.; Shan, J.; Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 2012, 7, 494–498.

    Article  CAS  Google Scholar 

  49. Zhao, M.; Ye, Z. L.; Suzuki, R.; Ye, Y.; Zhu, H. Y.; Xiao, J.; Wang, Y.; Iwasa, Y.; Zhang, X. Atomically phase-matched second-harmonic generation in a 2D crystal. Light Sci. Appl. 2016, 5, e16131.

    Article  CAS  Google Scholar 

  50. Yu, J.; Kuang, X. F.; Li, J. Z.; Zhong, J. H.; Zeng, C.; Cao, L. K.; Liu, Z. W.; Zeng, Z. X. S.; Luo, Z. Y.; He, T. C. et al. Giant nonlinear optical activity in two-dimensional palladium diselenide. Nat. Commun. 2021, 12, 1083.

    Article  CAS  Google Scholar 

  51. Janisch, C.; Wang, Y. X.; Ma, D.; Mehta, N.; Elías, A. L.; Perea-López, N.; Terrones, M.; Crespi, V.; Liu, Z. W. Extraordinary second harmonic generation in tungsten disulfide monolayers. Sci. Rep. 2014, 4, 5530.

    Article  CAS  Google Scholar 

  52. Hao, Q. Y.; Yi, H.; Su, H. M.; Wei, B.; Wang, Z.; Lao, Z. Z.; Chai, Y.; Wang, Z. C.; Jin, C. H.; Dai, J. F. et al. Phase identification and strong second harmonic generation in pure ε-InSe and its alloys. Nano Lett. 2019, 19, 2634–2640.

    Article  CAS  Google Scholar 

  53. Zhou, X.; Cheng, J. X.; Zhou, Y. B.; Cao, T.; Hong, H.; Liao, Z. M.; Wu, S. W.; Peng, H. L.; Liu, K. H.; Yu, D. P. Strong second-harmonic generation in atomic layered GaSe. J. Am. Chem. Soc. 2015, 137, 7994–7997.

    Article  CAS  Google Scholar 

  54. Huang, W. J.; Gan, L.; Li, H. Q.; Ma, Y.; Zhai, T. Y. Phase-engineered growth of ultrathin InSe flakes by chemical vapor deposition for high-efficiency second harmonic generation. Chem.—Eur. J. 2018, 24, 15678–15684.

    Article  CAS  Google Scholar 

  55. Dasgupta, A.; Gao, J.; Yang, X. D. Anisotropic third-harmonic generation in layered germanium selenide. Laser Photonics Rev. 2020, 12, 1900416.

    Article  Google Scholar 

  56. Choi, B. K.; Kim, M.; Jung, K. H.; Kim, J.; Yu, K. S.; Chang, Y. J. Temperature dependence of band gap in MoSe2 grown by molecular beam epitaxy. Nanoscale Res. Lett. 2017, 12, 492.

    Article  Google Scholar 

  57. Thripuranthaka, M.; Kashid, R. V.; Rout, C. S.; Late, D. J. Temperature dependent Raman spectroscopy of chemically derived few layer MoS2 and WS2 nanosheets. Appl. Phys. Lett. 2014, 104, 081911.

    Article  Google Scholar 

  58. Liang, J.; Zhang, J.; Li, Z. Z.; Hong, H.; Wang, J. H.; Zhang, Z. H.; Zhou, X.; Qiao, R. X.; Xu, J. Y.; Gao, P. et al. Monitoring local strain vector in atomic-layered MoSe2 by second-harmonic generation. Nano Lett. 2017, 17, 7539–7543.

    Article  CAS  Google Scholar 

  59. Khan, A. R.; Liu, B. Q.; Zhang, L. L.; Zhu, Y.; He, X.; Zhang, L. J.; Lü, T. Y.; Lu, Y. R. Extraordinary temperature dependent second harmonic generation in atomically thin layers of transition-metal dichalcogenides. Adv. Opt. Mater. 2020, 8, 2000441.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. H. G. Gu from Huazhong University of Science and Technology for his contribution in measuring the refractive index of SnP2S6. This work was supported by the National Natural Science Foundation of China (Nos. 21825103 and 51727809), Hubei Provincial Nature Science Foundation of China (No. 2019CFA002), the Fundamental Research Funds for the Central Universities (No. 2019kfyXMBZ018), and China Postdoctoral Science Foundation (No. 2020M682338). The authors also acknowledge the technical support from the Analytical and Testing Center of Huazhong University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaozong Hu or Tianyou Zhai.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Wang, F., Feng, X. et al. Inversion symmetry broken 2D SnP2S6 with strong nonlinear optical response. Nano Res. 15, 2391–2398 (2022). https://doi.org/10.1007/s12274-021-3806-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3806-0

Keywords

Navigation