Skip to main content
Log in

Flexible electrochromic fiber with rapid color switching and high optical modulation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Though flexible electrochromic devices have shown huge potential application in the fields of safety warning, display and smart windows, limited attention was paid on preparing flexible electrochromic fiber because of the difficulty in fabricating the multilayer electrochromic device structure in one-dimensional form. In this study, a flexible electrochromic nylon fiber based on Ag nanowires (NWs)/PEDOT:PSS/WO3 nanoparticles (NPs) (PEDOT:PSS = poly(3,4-ethylenedioxythiophene):polystyrenesulfonic acid) is successfully fabricated, delivering rapid color switching (2.5 and 9 s for bleaching and coloration) and high optical modulation (65.5% at 633 nm), and sustainable to repeated mechanical deformations. Ag NWs, PEDOT:PSS and WO3 NPs were dip-coated on the nylon fiber, resulting in an electrochromic fiber electrode with stable fiber resistance of 50–100 Ω/10 cm, which can withstand mechanical deformation against 300 times of bending cycles with bending radius of 0.5 cm, and sustain 30 times of tape-peeling. During the galvanostatic tests, the capacitance of the electrochromic electrode can maintain 70% of the initial value even after 5,000 times of charge-discharge cycles. Even in knotted shape, the fiber still shows excellent color contrast. This study provides a novel method to construct flexible electrochromic fiber and pave the way for the development of flexible optoelectronic devices, such as flexible and wearable displays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gong, X. F.; Li, S. H.; Lee, P. S. A fiber asymmetric supercapacitor based on FeOOH/PPy on carbon fibers as an anode electrode with high volumetric energy density for wearable applications. Nanoscale 2017, 9, 10794–10801.

    Article  CAS  Google Scholar 

  2. Zhang, Z. F.; Zhang, D. S.; Lin, H.; Chen, Y. Y. Flexible fiber-shaped supercapacitors with high energy density based on self-twisted graphene fibers. J. Power Sources 2019, 433, 226711.

    Article  CAS  Google Scholar 

  3. Xiong, J. Q.; Lin, M. F.; Wang, J. X.; Gaw, S. L.; Parida, K.; Lee, P. S. Wearable all-fabric-based triboelectric generator for water energy harvesting. Adv. Energy Mater. 2017, 7, 1701243.

    Article  Google Scholar 

  4. Wang, Z. P.; Cheng, J. L.; Guan, Q.; Huang, H.; Li, Y. C.; Zhou, J. W.; Ni, W.; Wang, B.; He, S. S.; Peng, H. S. All-in-one fiber for stretchable fiber-shaped tandem supercapacitors. Nano Energy 2018, 45, 210–219.

    Article  CAS  Google Scholar 

  5. Serrapede, M.; Rafique, A.; Fontana, M.; Zine, A.; Rivolo, P.; Bianco, S.; Chetibi, L.; Tresso, E.; Lamberti, A. Fiber-shaped asymmetric supercapacitor exploiting rGO/Fe2O3 aerogel and electrodeposited MnOx nanosheets on carbon fibers. Carbon 2019, 144, 91–100.

    Article  CAS  Google Scholar 

  6. Gu, H. X.; Guo, C. S.; Zhang, S. H.; Bi, L. H.; Li, T. C.; Sun, T. D.; Liu, S. Q. Highly efficient, near-infrared and visible light modulated electrochromic devices based on polyoxometalates and W18O49 nanowires. ACS Nano 2018, 12, 559–567.

    Article  CAS  Google Scholar 

  7. Huang, Q. J.; Dong, G. B.; Xiao, Y.; Diao, X. G. Electrochemical studies of silicon nitride electron blocking layer for all-solid-state inorganic electrochromic device. Electrochim. Acta 2017, 252, 331–337.

    Article  CAS  Google Scholar 

  8. Wang, J. L.; Lu, Y. R.; Li, H. H.; Liu, J. W.; Yu, S. H. Large area co-assembly of nanowires for flexible transparent smart windows. J. Am. Chem. Soc. 2017, 139, 9921–9926.

    Article  CAS  Google Scholar 

  9. Yun, T. G.; Kim, D.; Kim, Y. H.; Park, M.; Hyun, S.; Han, S. M. Photoresponsive smart coloration electrochromic supercapacitor. Adv. Mater. 2017, 29, 1606728.

    Article  Google Scholar 

  10. Lin, F.; Bult, J. B.; Nanayakkara, S.; Dillon, A. C.; Richards, R. M.; Blackburn, J. L.; Engtrakul, C. Graphene as an efficient interfacial layer for electrochromic devices. ACS Appl. Mater. Interfaces 2015, 7, 11330–11336.

    Article  CAS  Google Scholar 

  11. Guan, Y.; Agra-Kooijman, D. M.; Fu, S. H.; Jákli, A.; West, J. L. Responsive liquid-crystal-clad fibers for advanced textiles and wearable sensors. Adv. Mater. 2019, 31, 1902168.

    Article  Google Scholar 

  12. Liu, Z. F.; Zhang, Q. H.; Wang, H. Z.; Li, Y. G. Structural colored fiber fabricated by a facile colloid self-assembly method in microspace. Chem. Commun. 2011, 47, 12801–12803.

    Article  CAS  Google Scholar 

  13. Macharia, D. K.; Ahmed, S.; Zhu, B.; Liu, Z. X.; Wang, Z. J.; Mwasiagi, J. I.; Chen, Z. G.; Zhu, M. F. UV/NIR-light-triggered rapid and reversible color switching for rewritable smart fabrics. ACS Appl. Mater. Interfaces 2019, 11, 13370–13379.

    Article  CAS  Google Scholar 

  14. Eh, A. L. S.; Tan, A. W. M.; Cheng, X.; Magdassi, S.; Lee, P. S. Recent advances in flexible electrochromic devices: Prerequisites, challenges, and prospects. Energy Technol. 2018, 6, 33–45.

    Article  Google Scholar 

  15. Ke, Y. J.; Chen, J. W.; Lin, G. J.; Wang, S. C.; Zhou, Y.; Yin, J.; Lee, P. S.; Long, Y. Smart windows: Electro-, thermo-, mechano-, photochromics, and beyond. Adv. Energy Mater. 2019, 9, 1902066.

    Article  CAS  Google Scholar 

  16. Jensen, J.; Hösel, M.; Dyer, A. L.; Krebs, F. C. Development and manufacture of polymer-based electrochromic devices. Adv. Funct. Mater. 2015, 25, 2073–2090.

    Article  CAS  Google Scholar 

  17. Koo, B. R.; Jo, M. H.; Kim, K. H.; Ahn, H. J. Amorphous-quantized WO3·H2O films as novel flexible electrode for advanced electrochromic energy storage devices. Chem. Eng. J. 2021, 424, 130383.

    Article  CAS  Google Scholar 

  18. Koo, B. R.; Jo, M. H.; Kim, K. H.; Ahn, H. J. Multifunctional electrochromic energy storage devices by chemical cross-linking: Impact of a WO3·H2O nanoparticle-embedded chitosan thin film on amorphous WO3 films. NPG Asia Mater. 2020, 12, 10.

    Article  CAS  Google Scholar 

  19. Wei, D.; Scherer, M. R. J.; Bower, C.; Andrew, P.; Ryhänen, T.; Steiner, U. A nanostructured electrochromic supercapacitor. Nano Lett. 2012, 12, 1857–1862.

    Article  CAS  Google Scholar 

  20. Cai, G. F.; Wang, J. X.; Lee, P. S. Next-generation multifunctional electrochromic devices. Acc. Chem. Res. 2016, 49, 1469–1476.

    Article  CAS  Google Scholar 

  21. Yun, T. G.; Park, M.; Kim, D. H.; Kim, D.; Cheong, J. Y.; Bae, J. G.; Han, S. M.; Kim, I. D. All-transparent stretchable electrochromic supercapacitor wearable patch device. ACS Nano 2019, 13, 3141–3150.

    Article  CAS  Google Scholar 

  22. Zhang, J.; Tu, J. P.; Cai, G. F.; Du, G. H.; Wang, X. L.; Liu, P. C. Enhanced electrochromic performance of highly ordered, macroporous WO3 arrays electrodeposited using polystyrene colloidal crystals as template. Electrochim. Acta 2013, 99, 1–8.

    Article  CAS  Google Scholar 

  23. Zhou, K. L.; Wang, H.; Jiu, J. T.; Liu, J. B.; Yan, H.; Suganuma, K. Polyaniline films with modified nanostructure for bifunctional flexible multicolor electrochromic and supercapacitor applications. Chem. Eng. J. 2018, 345, 290–299.

    Article  CAS  Google Scholar 

  24. Cai, G. F.; Darmawan, P.; Cui, M. Q.; Wang, J. X.; Chen, J. W.; Magdassi, S.; Lee, P. S. Highly stable transparent conductive silver Grid/PEDOT:PSS electrodes for integrated bifunctional flexible electrochromic supercapacitors. Adv. Energy Mater. 2016, 6, 1501882.

    Article  Google Scholar 

  25. Cai, G. F.; Park, S.; Cheng, X.; Eh, A. L. S.; Lee, P. S. Inkjet-printed metal oxide nanoparticles on elastomer for strain-adaptive transmissive electrochromic energy storage systems. Sci. Technol. Adv. Mater. 2018, 19, 759–770.

    Article  CAS  Google Scholar 

  26. Fan, H. W.; Li, K. R.; Liu, X. L.; Xu, K. X.; Su, Y.; Hou, C. Y.; Zhang, Q. H.; Li, Y. G.; Wang, H. Z. Continuously processed, long electrochromic fibers with multi-environmental stability. ACS Appl. Mater. Interfaces 2020, 12, 28451–28460.

    Article  CAS  Google Scholar 

  27. Zhou, Y.; Fang, J.; Wang, H. X.; Zhou, H.; Yan, G. L.; Zhao, Y.; Dai, L. M.; Lin, T. Multicolor electrochromic fibers with helix-patterned electrodes. Adv. Electron. Mater. 2018, 4, 1800104.

    Article  Google Scholar 

  28. Chen, X. L.; Lin, H. J.; Deng, J.; Zhang, Y.; Sun, X. M.; Chen, P. N.; Fang, X.; Zhang, Z. T.; Guan, G. Z.; Peng, H. S. Electrochromic fiber-shaped supercapacitors. Adv. Mater. 2014, 26, 8126–8132.

    Article  CAS  Google Scholar 

  29. Sun, J. Y.; Zhao, X. H.; Illeperuma, W. R. K.; Chaudhuri, O.; Oh, K. H.; Mooney, D. J.; Vlassak, J. J.; Suo, Z. G. Highly stretchable and tough hydrogels. Nature 2012, 489, 133–136.

    Article  CAS  Google Scholar 

  30. Xiong, J. Q.; Li, S. H.; Ye, Y. Y.; Wang, J. X.; Qian, K.; Cui, P.; Gao, D.; Lin, M. F.; Chen, T. P.; Lee, P. S. A deformable and highly robust ethyl cellulose transparent conductor with a scalable silver nanowires bundle micromesh. Adv. Mater. 2018, 30, 1802803.

    Article  Google Scholar 

  31. Grouchko, M.; Kamyshny, A.; Mihailescu, C. F.; Anghel, D. F.; Magdassi, S. Conductive inks with a “built-in” mechanism that enables sintering at room temperature. ACS Nano 2011, 5, 3354–3359.

    Article  CAS  Google Scholar 

  32. Tang, Y.; He, W.; Zhou, G. Y.; Wang, S. X.; Yang, X. J.; Tao, Z. H.; Zhou, J. C. A new approach causing the patterns fabricated by silver nanoparticles to be conductive without sintering. Nanotechnology 2012, 23, 355304.

    Article  Google Scholar 

  33. Jin, Y. X.; Li, L.; Cheng, Y. R.; Kong, L. Q.; Pei, Q. B.; Xiao, F. Cohesively enhanced conductivity and adhesion of flexible silver nanowire networks by biocompatible polymer sol-gel transition. Adv. Funct. Mater. 2015, 25, 1581–1587.

    Article  CAS  Google Scholar 

  34. Kim, E.; Jung, S. Layer-by-layer assembled electrochromic films for all-solid-state electrochromic devices. Chem. Mater. 2005, 17, 6381–6387.

    Article  CAS  Google Scholar 

  35. Liu, Q. R.; Chen, Q. Q.; Zhang, Q. Q.; Xiao, Y.; Zhong, X. L.; Dong, G. B.; Delplancke-Ogletree, M. P.; Terryn, H.; Baert, K.; Reniers, F. et al. In situ electrochromic efficiency of a nickel oxide thin film: Origin of electrochemical process and electrochromic degradation. J. Mater. Chem. C 2018, 6, 646–653.

    Article  CAS  Google Scholar 

  36. Malti, A.; Brooke, R.; Liu, X. J.; Zhao, D.; Ersman, P. A.; Fahlman, M.; Jonsson, M. P.; Berggren, M.; Crispin, X. Freestanding electrochromic paper. J. Mater. Chem. C 2016, 4, 9680–9686.

    Article  CAS  Google Scholar 

  37. Mortimer, R. J. Electrochromic materials. Annu. Rev. Mater. Res. 2011, 41, 241–268.

    Article  CAS  Google Scholar 

  38. Costa, C.; Pinheiro, C.; Henriques, I.; Laia, C. A. T. Inkjet printing of sol-gel synthesized hydrated tungsten oxide nanoparticles for flexible electrochromic devices. ACS Appl. Mater. Interfaces 2012, 4, 1330–1340.

    Article  CAS  Google Scholar 

  39. Liu, L.; Layani, M.; Yellinek, S.; Kamyshny, A.; Ling, H.; Lee, P. S.; Magdassi, S.; Mandler, D. “Nano to Nano” electrodeposition of WO3 crystalline nanoparticles for electrochromic coatings. J. Mater. Chem. A 2014, 2, 16224–16229.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

P. S. L. acknowledged the funding supported by National Research Foundation Investigatorship (No. NRF-NRFI201605) under the National Research Foundation, Prime Minister’s Office, Singapore. T. X. Z. acknowledged the international exchange and overseas study scholarship from Soochow University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuekun Lai or Pooi See Lee.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, T., Xiong, J., Chen, J. et al. Flexible electrochromic fiber with rapid color switching and high optical modulation. Nano Res. 16, 5473–5479 (2023). https://doi.org/10.1007/s12274-021-3798-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3798-9

Keywords

Navigation