Skip to main content
Log in

Necroptosis-elicited host immunity: GOx-loaded MoS2 nanocatalysts for self-amplified chemodynamic immunotherapy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Nanoparticles induced potent antitumor immunotherapy plays a significant role for enhancing conventional therapeutic effectiveness. However, revealing the pathway of how nanoagents themselves trigger the host immunity or how to maximize the immunotherapy efficacy still needs further exploration. Herein, rose-like MoS2 nanoflowers modified with 2-deoxy-D-glucose (2-DG) and glucose oxidase (GOx) (MPGGFs) have been successfully fabricated via a one-pot hydrothermal reaction and following one-by-one surface modification as a multifunctional nanocatalyst for photothermal therapy enhanced self-amplified chemodynamic immunotherapy (PTT-co-CDT). By introducing GOx, the obtained MPGGFs exhibited self-amplified chemodynamic therapeutic efficacy under hypoxia tumor microenvironment (TME) because of the raised intracellular H2O2 level via enzyme-catalysis of oxygen. Furthermore, combined with the intrinsic excellent photothermal conversion efficiency of MoS2 nanoflowers, PTT-co-CDT performances by MPGGFs could effectively induce the necroptosis of tumor cells both in vitro and in vivo. Then the induced necroptosis via PTT-co-CDT by MPGGFs could directly trigger host immunity by activating the antigen-specific T-cells (CD4+ and CD8+). Finally, the excellent in vivo safety of MPGGFs makes us believe that the successful construction of rose-like multifunctional nanocatalyst not only has great potentials for self-amplified chemodynamic immunotherapy, but also provides a paradigm for exploring necroptosis triggered host immunity for cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Du, W.; Mohammadpour, H.; O’Neill, R. E.; Kumar, S.; Chen, C.; Qiu, M.; Mei, L.; Qiu, J. X.; McCarthy, P. L.; Lee, K. P. et al. Serine protease inhibitor 6 protects alloreactive T cells from granzyme B-mediated mitochondrial damage without affecting graft-versus-tumor effect. OncoImmunology 2018, 7, e1397247.

  2. Waldman, A. D.; Fritz, J. M.; Lenardo, M. J. A guide to cancer immunotherapy: From T cell basic science to clinical practice. Nat. Rev. Immunol. 2020, 20, 651–668.

    Article  CAS  Google Scholar 

  3. Irvine, D. J.; Dane, E. L. Enhancing cancer immunotherapy with nanomedicine. Nat. Rev. Immunol. 2020, 20, 321–334.

    Article  CAS  Google Scholar 

  4. Smyth, M. J.; Ngiow, S. F.; Ribas, A.; Teng, M. W. L. Combination cancer immunotherapies tailored to the tumour microenvironment. Nat. Rev. Clin. Oncol. 2016, 13, 143–158.

    Article  CAS  Google Scholar 

  5. Wang, Z. Y.; Li, Z. Y.; Sun, Z. L.; Wang, S. R.; Ali, Z.; Zhu, S. H.; Liu, S.; Ren, Q. S.; Sheng, F. G.; Wang, B. D. et al. Visualization nanozyme based on tumor microenvironment “unlocking” for intensive combination therapy of breast cancer. Sci. Adv. 2020, 6, eabc8733.

    Article  CAS  Google Scholar 

  6. Shao, K.; Singha, S.; Clemente-Casares, X.; Tsai, S.; Yang, Y.; Santamaria, P. Nanoparticle-based immunotherapy for cancer. ACS Nano 2015, 9, 16–30.

    Article  CAS  Google Scholar 

  7. Dewitte, H.; Verbece, R.; Breccpot, K.; De Smedt, S. C.; Lentaccer, I. Nanoparticle design to induce tumor immunity and challenge the suppressive tumor microenvironment. Nano Today 0014, 9, 743–758.

    Article  Google Scholar 

  8. Chen, Q.; Xu, L. G.; Liang, C.; Wang, C.; Peng, R.; Liu, Z. Photothermal therapy with immune-adjuvant nanoparticles together with checcpoint bloccade for effective cancer immunotherapy. Nat. Commun. 016, 7, 13193.

  9. Chang, M. Y.; Wang, M.; Wang, M. F.; Shu, M. M.; Ding, B. B.; Li, C. X.; Pang, M. L.; Cui, S. Z.; Hou, Z. Y.; Lin, J. A multifunctional cascade bioreactor based on hollow-structured Cu2MoS4 for synergetic cancer chemo-dynamic therapy/starvation therapy/phototherapy/immunotherapy with remarkably enhanced efficacy. Adv. Mater. 2019, 31, e1905271.

    Article  Google Scholar 

  10. Ye, X. Y.; Liang, X.; Chen, Q.; Miao, Q. W.; Chen, X. L.; Zhang, X. D.; Mei, L. Surgical tumor-derived personalized photothermal vaccine formulation for cancer immunotherapy. ACS Nano 2019, 13, 2956–2968.

    Article  CAS  Google Scholar 

  11. Jiang, F.; Ding, B. B.; Liang, S.; Zhao, Y. J.; Cheng, Z. Y.; Xing, B. G.; Ma, P. A.; Lin, J. Intelligent MoS2-CuO heterostructures with multiplexed imaging and remarkably enhanced antitumor efficacy via synergetic photothermal therapy/chemodynamic therapy/immunotherapy. Biomaterials 2021, 268, 120545.

    Article  CAS  Google Scholar 

  12. Eggermont, A. M. M. Therapeutic vaccines in solid tumours: Can they be harmful? Eur. J. Cancer 2009, 45, 2087–2090.

    Article  CAS  Google Scholar 

  13. O’Donnell, J. S.; Teng, M. W. L.; Smyth, M. J. Cancer immunoediting and resistance to T cell-based immunotherapy. Nat. Rev. Clin. Oncol. 2019, 16, 151–167.

    Article  Google Scholar 

  14. Skoulidis, F.; Goldberg, M. E.; Greenawalt, D. M.; Hellmann, M. D.; Awad, M. M.; Gainor, J. F.; Schrock, A. B.; Hartmaier, R. J.; Trabucco, S. E.; Gay, L. et al. STK11/LKB1 mutations and PD-1 inhibitor resistance in KRAS-mutant lung adenocarcinoma. Cancer Discov. 2018, 8, 822–835.

    Article  CAS  Google Scholar 

  15. Korangath, P.; Barnett, J. D.; Sharma, A.; Henderson, E. T.; Stewart, J.; Yu, S. H.; Kandala, S. K.; Yang, C. T.; Caserto, J. S.; Hedayati, M. et al. Nanoparticle interactions with immune cells dominate tumor retention and induce T cell-mediated tumor suppression in models of breast cancer. Sci. Adv. 2020, 6, eaay1601.

  16. Deng, R. H.; Zou, M. Z.; Zheng, D. W.; Peng, S. Y.; Liu, W. L.; Bai, X. F.; Chen, H. S.; Sun, Y. X.; Zhou, P. H.; Zhang, X. Z. Nanoparticles from cuttlefish ink inhibit tumor growth by synergizing immunotherapy and photothermal therapy. ACS Nano 2019, 13, 8618–8629.

    Article  CAS  Google Scholar 

  17. Casares, N.; Pequignot, M. O.; Tesniere, A.; Ghiringhelli, F.; Roux, S.; Chaput, N.; Schmitt, E.; Hamai, A.; Hervas-Stubbs, S.; Obeid, M. et al. Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death. J. Exp. Med. 2005, 202, 1691–1701.

    Article  CAS  Google Scholar 

  18. Souers, A. J.; Leverson, J. D.; Boghaert, E. R.; Ackler, S. L.; Catron, N. D.; Chen, J.; Dayton, B. D.; Ding, H.; Enschede, S. H.; Fairbrother, W. J. et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat. Med. 2013, 19, 202–208.

    Article  CAS  Google Scholar 

  19. Yatim, N.; Cullen, S.; Albert, M. L. Dying cells actively regulate adaptive immune responses. Nat. Rev. Immunol. 2017, 17, 262–275.

    Article  CAS  Google Scholar 

  20. Snyder, A. G.; Hubbard, N. W.; Messmer, M. N.; Kofman, S. B.; Hagan, C. E.; Orozco, S. L.; Chiang, K.; Daniels, B. P.; Baker, D.; Oberst, A. Intratumoral activation of the necroptotic pathway components RIPK1 and RIPK3 potentiates antitumor immunity. Sci. Immunol. 2019, 4, eaaw2004.

    Article  CAS  Google Scholar 

  21. Grootjans, S.; Vanden, Berghe T.; Vandenabeele, P. Initiation and execution mechanisms of necroptosis: An overview. Cell Death Differ. 2017, 24, 1184–1195.

    Article  CAS  Google Scholar 

  22. Wang, F. Z.; Zheng, M. J.; Zhang, B.; Zhu, C. Q.; Li, Q.; Ma, L.; Shen, W. Z. Ammonia intercalated flower-like MoS2 nanosheet film as electrocatalyst for high efficient and stable hydrogen evolution. Sci. Rep. 2016, 6, 31092.

    Article  CAS  Google Scholar 

  23. Feng, G. B.; Wei, A. X.; Zhao, Y.; Liu, J. Synthesis of flower-like MoS2 nanosheets microspheres by hydrothermal method. J. Mater. Sci. Mater. Electron. 2015, 26, 8160–8166.

    Article  CAS  Google Scholar 

  24. He, C. B.; Duan, X. P.; Guo, N. N.; Chan, C.; Poon, C.; Weichselbaum, R. R.; Lin, W. B. Core-shell nanoscale coordination polymers combine chemotherapy and photodynamic therapy to potentiate checkpoint blockade cancer immunotherapy. Nat. Commun. 2016, 7, 12499.

    Article  CAS  Google Scholar 

  25. Yu, J.; Ma, D. Q.; Mei, L. Q.; Gao, Q.; Yin, W. Y.; Zhang, X.; Yan, L.; Gu, Z. J.; Ma, X. Y.; Zhao, Y. L. Peroxidase-like activity of MoS2 nanoflakes with different modifications and their application for H2O2 and glucose detection. J. Mater. Chem. B 2018, 6, 487–498.

    Article  CAS  Google Scholar 

  26. Xie, W. S.; Guo, Z. H.; Zhao, L. Y.; Wei, Y. Metal-phenolic networks: Facile assembled complexes for cancer theranostics. Theranostics 2021, 11, 6407–6426.

    Article  CAS  Google Scholar 

  27. Xie, W. S.; Guo, Z. H.; Cao, Z. B.; Gao, Q.; Wang, D.; Boyer, C.; Kavallaris, M.; Sun, X. D.; Wang, X. M.; Zhao, L. Y. et al. Manganese-based magnetic layered double hydroxide nanoparticle: A PH-sensitive and concurrently enhanced T1/T2-weighted dual-mode magnetic resonance imaging contrast agent. ACS Biomater. Sci. Eng. 2019, 5, 2555–2562.

    Article  CAS  Google Scholar 

  28. Ju, Y.; Zhang, H.; Yu, J.; Tong, S.; Tian, N.; Wang, Z.; Wang, X.; Su, X.; Chu, X.; Lin, J. et al. Monodisperse Au-Fe2C Janus nanoparticles: An attractive multifunctional material for triple-modal imaging-guided tumor photothermal therapy. ACS Nano 2017, 11, 9239–9248.

    Article  CAS  Google Scholar 

  29. Liu, C. H.; Cao, Y.; Cheng, Y. R.; Wang, D. D.; Xu, T. L.; Su, L.; Zhang, X. J.; Dong, H. F. An open source and reduce expenditure ROS generation strategy for chemodynamic/photodynamic synergistic therapy. Nat. Commun. 2020, 11, 1735.

    Article  CAS  Google Scholar 

  30. Wang, C. H.; Yang, J. X.; Dong, C. Y.; Shi, S. Glucose oxidase-related cancer therapies. Adv. Ther. 2020, 3, 2000110.

    Article  CAS  Google Scholar 

  31. Xie, W. S.; Gao, Q.; Wang, D.; Guo, Z. H.; Gao, F.; Wang, X. M.; Cai, Q.; Feng, S. S.; Fan, H. M.; Sun, X. D. et al. Doxorubicin-loaded Fe3O4@MoS2-PEG-2DG nanocubes as a theranostic platform for magnetic resonance imaging-guided chemo-photothermal therapy of breast cancer. Nano Res 2018, 11, 2470–2487.

    Article  CAS  Google Scholar 

  32. Lewis, S. M.; Williams, A.; Eisenbarth, S. C. Structure and function of the immune system in the spleen. Sci. Immunol. 2019, 4, eaau6085.

    Article  CAS  Google Scholar 

  33. Xu, J.; Xu, L. G.; Wang, C. Y.; Yang, R.; Zhuang, Q.; Han, X.; Dong, Z. L.; Zhu, W. W.; Peng, R.; Liu, Z. Near-infrared-triggered photodynamic therapy with multitasking upconversion nanoparticles in combination with checkpoint blockade for immunotherapy of colorectal cancer. ACS Nano 2017, 11, 4463–4474.

    Article  CAS  Google Scholar 

  34. Ding, B. B.; Shao, S.; Yu, C.; Teng, B.; Wang, M. F.; Cheng, Z. Y.; Wong, K. L.; Ma, P. A.; Lin, J. Large-pore mesoporous-silica-coated upconversion nanoparticles as multifunctional immunoadjuvants with ultrahigh photosensitizer and antigen loading efficiency for improved cancer photodynamic immunotherapy. Adv. Mater. 2018, 30, 1802479.

    Article  Google Scholar 

  35. Bronte, V.; Pittet, M. J. The spleen in local and systemic regulation of immunity. Immunity 2013, 39, 806–818.

    Article  CAS  Google Scholar 

  36. Xie, W. S.; Gao, Q.; Guo, Z. H.; Wang, D.; Gao, F.; Wang, X. M.; Wei, Y.; Zhao, L. Y. Injectable and self-healing thermosensitive magnetic hydrogel for asynchronous control release of doxorubicin and docetaxel to treat triple-negative breast cancer. ACS Appl. Mater. Interfaces 2017, 9, 33660–33673.

    Article  CAS  Google Scholar 

  37. Kunzmann, A.; Andersson, B.; Thurnherr, T.; Krug, H.; Scheynius, A.; Fadeel, B. Toxicology of engineered nanomaterials: Focus on biocompatibility, biodistribution and biodegradation. Biochim. Biophys. Acta Gen. Subj. 2011, 1810, 361–373.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 81671829, 21788102, and 51971116). Many thanks to Hunan Provincial Innovation Foundation for Postgraduate (No. 2020zzts079). By the way, all authors have given approval to the final version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lingyun Zhao or Yen Wei.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, W., Lu, J., Guo, Z. et al. Necroptosis-elicited host immunity: GOx-loaded MoS2 nanocatalysts for self-amplified chemodynamic immunotherapy. Nano Res. 15, 2244–2253 (2022). https://doi.org/10.1007/s12274-021-3763-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3763-7

Keywords

Navigation