Skip to main content
Log in

Pressure-induced photoluminescence enhancement and ambient retention in confined carbon dots

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Piezochromic luminescent materials have shown great potential in advanced optoelectronic applications. However, most of luminescent materials usually undergo emission quenching under external stimuli. Herein, we demonstrate for the first time that the photoluminescence of carbon dots (CDs) confined within sodium hydroxide can be enhanced when high pressure is applied. They exhibit a 1.6-fold fluorescence enhancement compared with pristine CDs. Importantly, the enhanced fluorescence intensity can be retained after the release of pressure to ambient conditions. A combination of experimental analysis and theoretical simulations indicates that such an enhanced emission is mainly attributed to the strong confinement resulting from the sodium hydroxide matrix, which can separate the CDs spatially and restrict the nonradiative pathway. These results provide a rational strategy for manipulating the optical properties of CDs with enhanced and retainable photoluminescence (PL) performance, thus opening up a venue for designing luminescent CDs-based materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim, S.; Yoon, S. J.; Park, S. Y. Highly fluorescent chameleon nanoparticles and polymer films: Multicomponent organic systems that combine FRET and photochromic switching. J. Am. Chem. Soc. 2012, 134, 12091–12097.

    Article  CAS  Google Scholar 

  2. Kim, D. H.; D’Aléo, A.; Chen, X. K.; Sandanayaka, A. D. S.; Yao, D. D.; Zhao, L.; Komino, T.; Zaborova, E.; Canard, G.; Tsuchiya, Y. et al. High-efficiency electroluminescence and amplified spontaneous emission from a thermally activated delayed fluorescent near-infrared emitter. Nat. Photonics. 2018, 12, 98–104.

    Article  CAS  Google Scholar 

  3. Wang, Y.; Tan, X.; Zhang, Y. M.; Zhu, S. Y.; Zhang, I.; Yu, B. H.; Wang, K.; Yang, B.; Li, M. J.; Zou, B. et al. Dynamic behavior of molecular switches in crystal under pressure and its reflection on tactile sensing. J. Am. Chem. Soc. 2015, 137, 931–939.

    Article  CAS  Google Scholar 

  4. Zhao, Y. S.; Li, N. N.; Xu, C.; Li, Y.; Zhu, H. Y.; Zhu, P. W.; Wang, X.; Yang, W. G. Abnormal pressure-induced photoluminescence enhancement and phase decomposition in pyrochlore La2Sn2O7. Adv. Mater. 2017, 29, 1701513.

    Article  Google Scholar 

  5. Sagara, Y.; Kato, T. Mechanically induced luminescence changes in molecular assemblies. Nat. Chem. 2009, 1, 605–610.

    Article  CAS  Google Scholar 

  6. Chi, Z. G.; Zhang, X. Q.; Xu, B. J.; Zhou, X.; Ma, C. P.; Zhang, Y.; Liu, S. W.; Xu, J. R. Recent advances in organic mechanofluorochromic materials. Chem. Soc. Rev. 2012, 41, 3878–3896.

    Article  CAS  Google Scholar 

  7. Wu, J.; Cheng, Y. Y.; Lan, J. B.; Wu, D.; Qian, S. Y.; Yan, L. P.; He, Z.; Li, X. Y.; Wang, K.; Zou, B. et al. Molecular engineering of mechanochromic materials by programmed C-H arylation: Making a counterpoint in the chromism trend. J. Am. Chem. Soc. 2016, 138, 12803–12812.

    Article  CAS  Google Scholar 

  8. Chauvin, N.; Mavel, A.; Patriarche, G.; Masenelli, B.; Gendry, M.; Machon, D. Pressure-dependent photoluminescence study of wurtzite InP nanowires. Nano Lett. 2016, 16, 2926–2930.

    Article  CAS  Google Scholar 

  9. Gan, Z. B.; Liu, Y. G.; Wang, L.; Jiang, S. Q.; Xia, N.; Yan, Z. P.; Wu, X.; Zhang, J. R.; Gu, W. M.; He, L. Z. et al. Distance makes a difference in crystalline photoluminescence. Nat. Commun. 2020, 11, 5572.

    Article  CAS  Google Scholar 

  10. Lü, X. J.; Stoumpos, C.; Hu, Q. Y.; Ma, X. D.; Zhang, D. Z.; Guo, S. H.; Hoffman, J.; Bu, K. J.; Guo, X. F.; Wang, Y. Q. et al. Regulating off-centering distortion maximizes photoluminescence in halide perovskites. Natl. Sci. Rev. 2020, nwaa288.

    Google Scholar 

  11. Wang, L. R.; Yao, P. P.; Wang, F.; Li, S. F.; Chen, Y. P.; Xia, T. Y.; Guo, E. J.; Wang, K.; Zou, B.; Guo, H. Z. Pressure-induced structural evolution and bandgap optimization of lead-free halide double perovskite (NH4)2SeBr6. Adv. Sci. 2020, 7, 1902900.

    Article  CAS  Google Scholar 

  12. Jaffe, A.; Lin, Y.; Mao, W. L.; Karunadasa, H. I. Pressure-induced metallization of the halide perovskite (CH3NH3)PbI3. J. Am. Chem. Soc. 2017, 139, 4330–4333.

    Article  CAS  Google Scholar 

  13. Liu, S.; Sun, S. S.; Gan, C. K.; del Águila, A. G.; Fang, Y. N.; Xing, J.; Do, T. T. H.; White, T. J.; Li, H. G.; Huang, W. et al. Manipulating efficient light emission in two-dimensional perovskite crystals by pressure-induced anisotropic deformation. Sci. Adv. 2019, 5, eaav9445.

    Article  CAS  Google Scholar 

  14. Lv, C. F.; Yang, X. G.; Shi, Z. F.; Wang, L. R.; Sui, L. Z.; Li, Q. Y.; Qin, J. X.; Liu, K. K.; Zhang, Z. F.; Li, X. et al. Pressure-induced ultra-broad-band emission of a Cs2AgBiBr6 perovskite thin film. J. Phys. Chem. C 2020, 124, 1732–1738.

    Article  CAS  Google Scholar 

  15. Mao, H. K.; Chen, X. J.; Ding, Y.; Li, B.; Wang, L. Solids, liquids, and gases under high pressure. Rev. Mod. Phys. 2018, 90, 015007.

    Article  CAS  Google Scholar 

  16. Yuan, Y.; Li, Y. W.; Fang, G. Y.; Liu, G. T.; Pei, C. Y.; Li, X.; Zheng, H. Y.; Yang, K.; Wang, L. Stoichiometric evolutions of PH3 under high pressure: Implication for high-Tc sperconducting hydrides. Natl. Sci. Rev. 2019, 6, 524–531.

    Article  CAS  Google Scholar 

  17. Huang, Y. W.; He, Y.; Sheng, H.; Lu, X.; Dong, H. N.; Samanta, S.; Dong, H. L.; Li, X. F.; Kim, D. Y.; Mao, H. K. et al. Li-ion battery material under high pressure: Amorphization and enhanced conductivity of Li4Ti5O12. Natl. Sci. Rev. 2019, 6, 239–246.

    Article  CAS  Google Scholar 

  18. Lim, S. Y.; Shen, W.; Gao, Z. Q. Carbon quantum dots and their applications. Chem. Soc. Rev. 2015, 44, 362–381.

    Article  CAS  Google Scholar 

  19. Liu, J.; Liu, Y.; Liu, N. Y.; Han, Y. Z.; Zhang, X.; Huang, H.; Lifshitz, Y.; Lee, S. T.; Zhong, J.; Kang, Z. H. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 2015, 347, 970–974.

    Article  CAS  Google Scholar 

  20. Qu, S. N.; Zhou, D.; Li, D.; Ji, W. Y.; Jing, P. T.; Han, D.; Liu, L.; Zeng, H. B.; Shen, D. Z. Toward efficient orange emissive carbon nanodots through conjugated sp2-domain controlling and surface charges engineering. Adv. Mater. 2016, 28, 3516–3521.

    Article  CAS  Google Scholar 

  21. Yuan, F. L.; Yuan, T.; Sui, L. Z.; Wang, Z. B.; Xi, Z. F.; Li, Y. C.; Li, X. H.; Fan, L. Z.; Tan, Z. A.; Chen, A. M. et al. Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs. Nat. Commun. 2018, 9, 2249.

    Article  Google Scholar 

  22. Miao, X.; Qu, D.; Yang, D. X.; Nie, B.; Zhao, Y. K.; Fan, H. Y.; Sun, Z. C. Synthesis of carbon dots with multiple color emission by controlled graphitization and surface functionalization. Adv. Mater. 2018, 30, 1704740.

    Article  Google Scholar 

  23. Jiang, K.; Wang, Y. H.; Cai, C. Z.; Lin, H. W. Conversion of carbon dots from fluorescence to ultralong room-temperature phosphorescence by heating for security applications. Adv. Mater. 2018, 30, 1800783.

    Article  Google Scholar 

  24. Zhang, J.; Yuan, Y.; Gao, M. L.; Han, Z.; Chu, C. Y.; Li, Y. G.; van Zijl, P. C. M.; Ying, M. Y.; Bulte, J. W. M.; Liu, G. S. Carbon dots as a new class of diamagnetic chemical exchange saturation transfer (diaCEST) MRI contrast agents. Angew. Chem., Int. Ed. 2019, 58, 9871–9875.

    Article  CAS  Google Scholar 

  25. Hu, C.; Li, M. Y.; Qiu, J. S.; Sun, Y. P. Design and fabrication of carbon dots for energy conversion and storage. Chem. Soc. Rev. 2019, 48, 2315–2337.

    Article  CAS  Google Scholar 

  26. Feng, T. L.; Tao, S. Y.; Yue, D.; Zeng, Q. S.; Chen, W. H.; Yang, B. Recent advances in energy conversion applications of carbon dots: From optoelectronic devices to electrocatalysis. Small 2020, 16, 2001295.

    Article  CAS  Google Scholar 

  27. Shen, C. L.; Lou, Q.; Liu, K. K.; Dong, L.; Shan, C. X. Chemiluminescent carbon dots: Synthesis, properties, and applications. Nano Today 2020, 35, 100954.

    Article  CAS  Google Scholar 

  28. Liu, K. K.; Song, S. Y.; Sui, L. Z.; Wu, S. X.; Jing, P. T.; Wang, R. Q.; Li, Q. Y.; Wu, G. R.; Zhang, Z. Z.; Yuan, K. J. et al. Efficient red/near-infrared-emissive carbon nanodots with multiphoton excited upconversion fluorescence. Adv. Sci. 2019, 6, 1900766.

    Article  Google Scholar 

  29. Song, S. Y.; Liu, K. K.; Wei, J. Y.; Lou, Q.; Shang, Y.; Shan, C. X. Deep-ultraviolet emissive carbon nanodots. Nano Lett. 2019, 19, 5553–5561.

    Article  CAS  Google Scholar 

  30. Liang, Y. C.; Gou, S. S.; Liu, K. K.; Wu, W. J.; Guo, C. Z.; Lu, S. Y.; Zang, J. H.; Wu, X. Y.; Lou, Q.; Dong, L. et al. Ultralong and efficient phosphorescence from silica confined carbon nanodots in aqueous solution. Nano Today 2020, 34, 100900.

    Article  CAS  Google Scholar 

  31. Mao, W. L.; Mao, H K.; Eng, P. J.; Trainor, T. P.; Newville, M.; Kao, C. C.; Heinz, D. L.; Shu, J. F.; Meng, Y.; Hemley, R. J. Bonding changes in compressed superhard graphite. Science 2003, 302, 425–427.

    Article  CAS  Google Scholar 

  32. Wang, L.; Liu, B. B; Li, H.; Yang, W. G.; Ding, Y.; Sinogeikin, S. V.; Meng, Y.; Liu, Z. X.; Zeng, X. C.; Mao, W. L. Long-range ordered carbon clusters: A crystalline material with amorphous building blocks. Science 2012, 337, 825–828.

    Article  CAS  Google Scholar 

  33. Huang, Q.; Yu, D. L.; Xu, B.; Hu, W. T.; Ma, Y. M.; Wang, Y. B.; Zhao, Z. S.; Wen, B.; He, J. L.; Liu, Z. Y. et al. Nanotwinned diamond with unprecedented hardness and stability. Nature 2014, 510, 250–253.

    Article  CAS  Google Scholar 

  34. Yang, X. G.; Yao, M. G.; Wu, X. Y.; Liu, S. J.; Chen, S. L.; Yang, K.; Liu, R.; Cui, T.; Sundqvist, B.; Liu, B. B. Novel superhard sp3 carbon allotrope from cold-compressed C70 peapods. Phys. Rev. Lett. 2017, 118, 245701.

    Article  Google Scholar 

  35. Yang, X. G.; Lv, C. F.; Yao, Z.; Yao, M. G.; Qin, J. X.; Li, X.; Shi, L.; Du, M. R.; Liu, B. B.; Shan, C. X. Band-gap engineering and structure evolution of confined long linear carbon chains@double-walled carbon nanotubes under pressure. Carbon 2020, 159, 266–272.

    Article  CAS  Google Scholar 

  36. Pei, C. Y.; Wang, L. Recent progress on high-pressure and high-temperature studies of fullerenes and related materials. Matter Radiat. Extrem. 2019, 4, 028201.

    Article  Google Scholar 

  37. Dong, J. J.; Yao, Z.; Yao, M. G.; Li, R.; Hu, K.; Zhu, L. Y.; Wang, Y.; Sun, H. H.; Sundqvist, B.; Yang, K. et al. Decompression-induced diamond formation from graphite sheared under pressure. Phys. Rev. Lett. 2020, 124, 065701.

    Article  CAS  Google Scholar 

  38. Zhang, Y.; Yao, M. G.; Du, M. R.; Yao, Z.; Wang, Y.; Dong, J. J.; Yang, Z. X.; Sundqvist, B.; Kováts, É.; Pekker, S. et al. Negative volume compressibility in Sc3N@C80-cubane cocrystal with charge transfer. J. Am. Chem. Soc. 2020, 142, 7584–7590.

    Article  CAS  Google Scholar 

  39. Lu, S. Y.; Xiao, G. J.; Sui, L. Z.; Feng, T. L.; Yong, X.; Zhu, S. J.; Li, B. J.; Liu, Z. Y.; Zou, B.; Jin, M. X. et al. Piezochromic carbon dots with two-photon fluorescence. Angew. Chem., Int. Ed. 2017, 129, 6283–6287.

    Article  Google Scholar 

  40. Liu, C.; Xiao, G. J.; Yang, M. L.; Zou, B.; Zhang, Z. L.; Pang, D. W. Mechanofluorochromic carbon nanodots: Controllable pressure-triggered blue-and red-shifted photoluminescence. Angew. Chem., Int. Ed. 2018, 57, 1893–1897.

    Article  CAS  Google Scholar 

  41. Geng, T.; Feng, T. L.; Ma, Z. W.; Cao, Y.; Chen, Y. P.; Tao, S. Y.; Xiao, G. J.; Lu, S. Y.; Yang, B.; Zou, B. Insights into supramolecular-interaction-regulated piezochromic carbonized polymer dots. Nanoscale 2019, 11, 5072–5079.

    Article  CAS  Google Scholar 

  42. Jing, P. T.; Han, D.; Li, D.; Zhou, D.; Shen, D. Z.; Xiao, G. J.; Zou, B.; Qu, S. N. Surface related intrinsic luminescence from carbon nanodots: Solvent dependent piezochromism. Nanoscale Horiz. 2019, 4, 175–181.

    Article  CAS  Google Scholar 

  43. Wang, J. L.; Zhang, F.; Wang, Y. L.; Yang, Y. Z.; Liu, X. G. Efficient resistance against solid-state quenching of carbon dots towards white light emitting diodes by physical embedding into silica. Carbon 2018, 126, 426–436.

    Article  CAS  Google Scholar 

  44. Wei, J. Y.; Lou, Q.; Zang, J. H.; Liu, Z. Y.; Ye, Y. L.; Shen, C. L.; Zhao, W. B.; Dong, L.; Shan, C. X. Scalable synthesis of green fluorescent carbon dot powders with unprecedented efficiency. Adv. Opt. Mater. 2020, 8, 1901938.

    Article  CAS  Google Scholar 

  45. Li, W. D.; Liu, Y.; Wu, M.; Feng, X. L.; Redfern, S. A. T.; Shang, Y.; Yong, X.; Feng, T. L.; Wu, K. F.; Liu, Z. Y. et al. Carbon-quantum-dots-loaded ruthenium nanoparticles as an efficient electrocatalyst for hydrogen production in alkaline media. Adv. Mater. 2018, 30, 1800676.

    Article  Google Scholar 

  46. Lu, S. Y.; Sui, L. Z.; Liu, J. J.; Zhu, S. J.; Chen, A. M.; Jin, M. X.; Yang, B. Near-infrared photoluminescent polymer-carbon nanodots with two-photon fluorescence. Adv. Mater. 2017, 29, 1603443.

    Article  Google Scholar 

  47. Liang, Y. C.; Liu, K. K.; Wu, X. Y.; Lou, Q.; Sui, L. Z.; Dong, L.; Yuan, K. J.; Shan, C. X. Lifetime-engineered carbon nanodots for time division duplexing. Adv. Sci. 2021, 8, 2003433.

    Article  CAS  Google Scholar 

  48. Yang, H. Y.; Liu, Y. L.; Guo, Z. Y.; Lei, B. F.; Zhuang, J. L.; Zhang, X. J.; Liu, Z. M.; Hu, C. F. Hydrophobic carbon dots with blue dispersed emission and red aggregation-induced emission. Nat. Commun. 2019, 10, 1789.

    Article  Google Scholar 

  49. Song, S. Y.; Sui, L. Z.; Liu, K. K.; Cao, Q.; Zhao, W. B.; Liang, Y. C.; Lv, C. F.; Zang, J. H.; Shang, Y.; Lou, Q. et al. Self-exothermic reaction driven large-scale synthesis of phosphorescent carbon nanodots. Nano Res. 2021, 14, 2231–2240.

    Article  CAS  Google Scholar 

  50. Yan, F. Y.; Jiang, Y. X.; Sun, X. D.; Wei, J. F.; Chen, L.; Zhang, Y. Y. Multicolor carbon dots with concentration-tunable fluorescence and solvent-affected aggregation states for white light-emitting diodes. Nano Res. 2020, 13, 52–60.

    Article  CAS  Google Scholar 

  51. Yuan, F. L.; He, P.; Xi, Z. F.; Li, X. H.; Li, Y. C.; Zhong, H. Z.; Fan, L. Z.; Yang, S. H. Highly efficient and stable white LEDs based on pure red narrow bandwidth emission triangular carbon quantum dots for wide-color gamut backlight displays. Nano Res. 2019, 12, 1669–1674.

    Article  CAS  Google Scholar 

  52. Tan, J.; Li, Q. J.; Meng, S.; Li, Y. C.; Yang, J.; Ye, Y. X.; Tang, Z. K.; Qu, S. N.; Ren, X. D. Time-dependent phosphorescence colors from carbon dots for advanced dynamic information encryption. Adv. Mater. 2021, 33, 2006781.

    Article  CAS  Google Scholar 

  53. Sun, Y. Q.; Liu, S. T.; Sun, L. Y.; Wu, S. S.; Hu, G. Q.; Pang, X. L.; Smith, A. T.; Hu, C. F.; Zeng, S. S.; Wang, W. X. et al. Ultralong lifetime and efficient room temperature phosphorescent carbon dots through multi-confinement structure design. Nat. Commun. 2020, 11, 5591.

    Article  CAS  Google Scholar 

  54. Dong, Y. J.; Xu, B.; Zhang, J. B.; Tan, X.; Wang, L. J.; Chen, J. L.; Lv, H. G.; Wen, S. P.; Li, B.; Ye, L. et al. Piezochromic luminescence based on the molecular aggregation of 9,10-bis((E)-2-(pyrid-2-yl)vinyl)anthracene. Angew. Chem., Int. Ed. 2012, 51, 10782–10785.

    Article  CAS  Google Scholar 

  55. Liu, Y. J.; Zeng, Q. X.; Zou, B.; Liu, Y.; Xu, B.; Tian, W. J. Piezochromic luminescence of donor-acceptor cocrystals: Distinct responses to anisotropic grinding and isotropic compression. Angew. Chem., Int. Ed. 2018, 57, 15670–15674.

    Article  CAS  Google Scholar 

  56. Jiang, L.; Ding, H. Z.; Lu, S. Y.; Geng, T.; Xiao, G. J.; Zou, B.; Bi, H. Photoactivated fluorescence enhancement in F, N-doped carbon dots with piezochromic behavior. Angew. Chem., Int. Ed. 2020, 59, 9986–9991.

    Article  CAS  Google Scholar 

  57. Wang, Q.; Zhang, S. J.; Wang, B. Y.; Yang, X. Y.; Zou, B.; Yang, B.; Lu, S. Y. Pressure-triggered aggregation-induced emission enhancement in red emissive amorphous carbon dots. Nanoscale Horiz. 2019, 4, 1227–1231.

    Article  CAS  Google Scholar 

  58. Qi, Q. K.; Qian, J. Y.; Tan, X.; Zhang, J. B.; Wang, L. J.; Xu, B.; Zou, B.; Tian, W. J. Remarkable turn-on and color-tuned piezochromic luminescence: Mechanically switching intramolecular charge transfer in molecular crystals. Adv. Funct. Mater. 2015, 25, 4005–4010.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 11804307, 12074348, U2004168, 62027816 and U1804155), the China Postdoctoral Science Foundation (Nos. 2018M630830, 2019T120631 and 2020M682310), and the Natural Science Foundation of Henan Province (Nos. 212300410410 and 212300410078).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xigui Yang, Yuan Shang or Chong-Xin Shan.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lou, Q., Yang, X., Liu, K. et al. Pressure-induced photoluminescence enhancement and ambient retention in confined carbon dots. Nano Res. 15, 2545–2551 (2022). https://doi.org/10.1007/s12274-021-3736-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3736-x

Keywords

Navigation