Skip to main content
Log in

Few-layered organic single-crystalline heterojunctions for high-performance phototransistors

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Photogating and electrical gating are key physical mechanisms in organic phototransistors (OPTs). However, most OPTs are based on thick and polycrystalline films, which leads to substantially low efficiency of both photogating and electrical gating and thus reduced photoresponse. Herein, high-performance OPTs based on few-layered organic single-crystalline heterojunctions are proposed and the obstacle of thick and polycrystalline films for photodetection is overcome. Because of the molecular scale thickness of the type I organic single-crystalline heterojunctions in OPTs, both photogating and electrical gating are highly efficient. By synergy of efficient photogating and electrical gating, key figures of merit of OPTs reach the highest among those based on planar heterojunctions so far as we know. The production of few-layered organic single-crystalline heterojunctions will provide a new type of advanced materials for various applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tang, Q.; Zhang, G. P.; Jiang, B. H.; Ji, D. Y.; Kong, H. H.; Riehemann, K.; Ji, Q. M.; Fuchs, H. Self-assembled fullerene (C60)-pentacene superstructures for photodetectors. SmartMat 2021, 2, 109–118.

    Article  Google Scholar 

  2. Chow, P. C. Y.; Someya, T. Organic photodetectors for next-generation wearable electronics. Adv. Mater. 2020, 32, 1902045.

    Article  CAS  Google Scholar 

  3. Yao, Y. F.; Chen, Y. S.; Wang, H. L.; Samorì, P. Organic photodetectors based on supramolecular nanostructures. SmartMat 2020, 1, e1009.

    Article  Google Scholar 

  4. Yang, F. X.; Cheng, S. S.; Zhang, X. T.; Ren, X. C.; Li, R. J.; Dong, H. L.; Hu, W. P. 2D organic materials for optoelectronic applications. Adv. Mater. 2018, 30, 1702415.

    Article  Google Scholar 

  5. He, X. W.; Léonard, F.; Kono, J. Uncooled carbon nanotube photodetectors. Adv. Opt. Mater. 2015, 3, 989–1011.

    Article  CAS  Google Scholar 

  6. Kuribara, K.; Wang, H.; Uchiyama, N.; Fukuda, K.; Yokota, T.; Zschieschang, U.; Jaye, C.; Fischer, D.; Klauk, H.; Yamamoto, T. et al. Organic transistors with high thermal stability for medical applications. Nat. Commun. 2012, 3, 723.

    Article  Google Scholar 

  7. Kufer, D.; Konstantatos, G. Photo-FETs: Phototransistors enabled by 2D and 0D nanomaterials. ACS Photonics 2016, 3, 2197–2210.

    Article  CAS  Google Scholar 

  8. Wang, C.; Zhang, X. T.; Hu, W. P. Organic photodiodes and phototransistors toward infrared detection: Materials, devices, and applications. Chem. Soc. Rev. 2020, 49, 653–670.

    Article  CAS  Google Scholar 

  9. Guo, J. H.; Jiang, S.; Pei, M. J.; Xiao, Y. L.; Zhang, B. W.; Wang, Q. J.; Zhu, Y.; Wang, H. Y.; Jie, J. S.; Wang, X. R. et al. Few-layer organic crystalline van der waals heterojunctions for ultrafast UV phototransistors. Adv. Electron. Mater. 2020, 6, 2000062.

    Article  CAS  Google Scholar 

  10. Qian, C.; Sun, J.; Kong, L. A.; Gou, G. Y.; Zhu, M. L.; Yuan, Y. B.; Huang, H.; Gao, Y. L.; Yang, J. L. High-performance organic heterojunction phototransistors based on highly ordered copper phthalocyanine/para-sexiphenyl thin films. Adv. Funct. Mater. 2017, 27, 1604933.

    Article  Google Scholar 

  11. Baeg, K. J.; Binda, M.; Natali, D.; Caironi, M.; Noh, Y. Y. Organic light detectors: Photodiodes and phototransistors. Adv. Mater. 2013, 25, 4267–4295.

    Article  CAS  Google Scholar 

  12. Li, F.; Chen, Y.; Ma, C.; Buttner, U.; Leo, K.; Wu, T. Highperformance near-infrared phototransistor based on n-type small-molecular organic semiconductor. Adv. Electron. Mater. 2017, 3, 1600430.

    Article  Google Scholar 

  13. Mikhnenko, O. V.; Blom, P. W. M.; Nguyen, T. Q. Exciton diffusion in organic semiconductors. Energy Environ. Sci. 2015, 8, 1867–1888.

    Article  Google Scholar 

  14. Deibel, C.; Strobel, T.; Dyakonov, V. Role of the charge transfer state in organic donor-acceptor solar cells. Adv. Mater. 2010, 22, 4097–4111.

    Article  CAS  Google Scholar 

  15. Brédas, J. L.; Beljonne, D.; Coropceanu, V.; Cornil, J. Chargetransfer and energy-transfer processes in π-conjugated oligomers and polymers: A molecular picture. Chem. Rev. 2004, 104, 4971–5004.

    Article  Google Scholar 

  16. Scheidler, M.; Lemmer, U.; Kersting, R.; Karg, S.; Riess, W.; Cleve, B.; Mahrt, R. F.; Kurz, H.; Bässler, H.; Göbel, E. O. et al. Monte carlo study of picosecond exciton relaxation and dissociation in poly(phenylenevinylene). Phys. Rev. B 1996, 54, 5536–5544.

    Article  CAS  Google Scholar 

  17. Wang, J.; Han, J. Y.; Chen, X. Q.; Wang, X. R. Design strategies for two-dimensional material photodetectors to enhance device performance. InfoMat 2019, 1, 33–53.

    Article  CAS  Google Scholar 

  18. Cheng, R.; Li, D. H.; Zhou, H. L.; Wang, C.; Yin, A. X.; Jiang, S.; Liu, Y.; Chen, Y.; Huang, Y.; Duan, X. F. Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p-n diodes. Nano Lett. 2014, 14, 5590–5597.

    Article  CAS  Google Scholar 

  19. Dong, H. L.; Zhu, H. F.; Meng, Q.; Gong, X.; Hu, W. P. Organic photoresponse materials and devices. Chem. Soc. Rev. 2012, 41, 1754–1808.

    Article  CAS  Google Scholar 

  20. Peng, Y. Q.; Lv, W. L.; Yao, B.; Fan, G. Y.; Chen, D. Q.; Gao, P. J.; Zhou, M. Q.; Wang, Y. High performance near infrared photosensitive organic field-effect transistors realized by an organic hybrid planar-bulk heterojunction. Org. Electron. 2013, 14, 1045–1051.

    Article  CAS  Google Scholar 

  21. Liang, Y. L.; Lv, W. L.; Luo, X.; He, L.; Xu, K.; Zhao, F. Y.; Huang, F. B.; Lu, F. P.; Peng, Y. Q. A comprehensive investigation of organic active layer structures toward high performance near-infrared phototransistors. Synth. Met. 2018, 240, 44–51.

    Article  CAS  Google Scholar 

  22. Yao, J. R.; Zhang, Y.; Tian, X. Z.; Zhang, X. L.; Zhao, H. J.; Zhang, X. T.; Jie, J. S.; Wang, X. R.; Li, R. J.; Hu, W. P. Layer-defining strategy to grow two-dimensional molecular crystals on a liquid surface down to the monolayer limit. Angew. Chem., Int. Ed. 2019, 58, 16082–16086.

    Article  CAS  Google Scholar 

  23. Wang, C.; Ren, X. C.; Xu, C. H.; Fu, B. B.; Wang, R. H.; Zhang, X. T.; Li, R. J.; Li, H. X.; Dong, H. L.; Zhen, Y. G. et al. N-type 2D organic single crystals for high-performance organic field-effect transistors and near-infrared phototransistors. Adv. Mater. 2018, 30, 1706260.

    Article  Google Scholar 

  24. Fang, H. H.; Hu, W. D. Photogating in low dimensional photodetectors. Adv. Sci. 2017, 4, 1700323.

    Article  Google Scholar 

  25. Wang, Q. J.; Qian, J.; Li, Y.; Zhang, Y. H.; He, D. W.; Jiang, S.; Wang, Y.; Wang, X. R.; Pan, L. J.; Wang, J. Z. et al. 2D single-crystalline molecular semiconductors with precise layer definition achieved by floating-coffee-ring-driven assembly. Adv. Funct. Mater. 2016, 26, 3191–3198.

    Article  CAS  Google Scholar 

  26. Menke, S. M.; Holmes, R. J. Exciton diffusion in organic photovoltaic cells. Energy Environ. Sci. 2014, 7, 499–512.

    Article  CAS  Google Scholar 

  27. Buscema, M.; Island, J. O.; Groenendijk, D. J.; Blanter, S. I.; Steele, G. A.; van der Zant, H. S. J.; Castellanos-Gomez, A. Photocurrent generation with two-dimensional van der waals semiconductors. Chem. Soc. Rev. 2015, 44, 3691–3718.

    Article  CAS  Google Scholar 

  28. Wang, C.; Fu, B. B.; Zhang, X. T.; Li, R. J.; Dong, H. L.; Hu, W. P. Solution-processed, large-area, two-dimensional crystals of organic semiconductors for field-effect transistors and phototransistors. ACS Cent. Sci. 2020, 6, 636–652.

    Article  CAS  Google Scholar 

  29. Wang, J. W.; Deng, W.; Wang, W.; Jia, R. F.; Xu, X. Z.; Xiao, Y. L.; Zhang, X. J.; Jie, J. S.; Zhang, X. H. External-force-driven solution epitaxy of large-area 2D organic single crystals for highperformance field-effect transistors. Nano Res. 2019, 12, 2796–2801.

    Article  CAS  Google Scholar 

  30. Qian, J.; Jiang, S.; Li, S. L.; Wang, X. R.; Shi, Y.; Li, Y. Solution-processed 2D molecular crystals: Fabrication techniques, transistor applications, and physics. Adv. Mater. Technol. 2019, 4, 1800182.

    Article  Google Scholar 

  31. Wang, Q. Q.; Yang, F. X.; Zhang, Y.; Chen, M. X.; Zhang, X. T.; Lei, S. B.; Li, R. J.; Hu, W. P. Space-confined strategy toward large-area two-dimensional single crystals of molecular materials. J. Am. Chem. Soc. 2018, 140, 5339–5342.

    Article  CAS  Google Scholar 

  32. Zhang, Y. H.; Luo, Z. Z.; Hu, F. R.; Nan, H. Y.; Wang, X. Y.; Ni, Z. H.; Xu, J. B.; Shi, Y.; Wang, X. R. Realization of vertical and lateral van der waals heterojunctions using two-dimensional layered organic semiconductors. Nano Res. 2017, 10, 1336–1344.

    Article  CAS  Google Scholar 

  33. Xu, C. H.; He, P.; Liu, J.; Cui, A. J.; Dong, H. L.; Zhen, Y. G.; Chen, W.; Hu, W. P. A general method for growing two-dimensional crystals of organic semiconductors by “solution epitaxy”. Angew. Chem., Int. Ed. 2016, 55, 9519–9523.

    Article  CAS  Google Scholar 

  34. Jiang, L.; Dong, H. L.; Meng, Q.; Li, H. X.; He, M.; Wei, Z. M.; He, Y. D.; Hu, W. P. Millimeter-sized molecular monolayer two-dimensional crystals. Adv. Mater. 2011, 23, 2059–2063.

    Article  CAS  Google Scholar 

  35. Wu, B.; Zhao, Y. H.; Nan, H. Y.; Yang, Z. Y.; Zhang, Y. H.; Zhao, H. J.; He, D. W.; Jiang, Z. L.; Liu, X. L.; Li, Y. et al. Precise, self-limited epitaxy of ultrathin organic semiconductors and heterojunctions tailored by van der Waals interactions. Nano Lett. 2016, 16, 3754–3759.

    Article  CAS  Google Scholar 

  36. Peng, B. Y.; Huang, S. Y.; Zhou, Z. W.; Chan, P. K. L. Solution-processed monolayer organic crystals for high-performance field-effect transistors and ultrasensitive gas sensors. Adv. Funct. Mater. 2017, 27, 1700999.

    Article  Google Scholar 

  37. Becerril, H. A.; Roberts, M. E.; Liu, Z. H.; Locklin, J.; Bao, Z. N. High-performance organic thin-film transistors through solution-sheared deposition of small-molecule organic semiconductors. Adv. Mater. 2008, 20, 2588–2594.

    Article  CAS  Google Scholar 

  38. Zhang, Z. C.; Peng, B. Y.; Ji, X. D.; Pei, K.; Chan, P. K. L. Marangoni-effect-assisted bar-coating method for high-quality organic crystals with compressive and tensile strains. Adv. Funct. Mater. 2017, 27, 1703443.

    Article  Google Scholar 

  39. Diao, Y.; Tee, B. C. K.; Giri, G.; Xu, J.; Kim, D. H.; Becerril, H. A.; Stoltenberg, R. M.; Lee, T. H.; Xue, G.; Mannsfeld, S. C. B. et al. Solution coating of large-area organic semiconductor thin films with aligned single-crystalline domains. Nat. Mater. 2013, 12, 665–671.

    Article  CAS  Google Scholar 

  40. Xue, G. B.; Fan, C. C.; Wu, J. K.; Liu, S.; Liu, Y. J.; Chen, H. Z.; Xin, H. L.; Li, H. Y. Ambipolar charge transport of TIPS-pentacene single-crystals grown from non-polar solvents. Mater. Horiz. 2015, 2, 344–349.

    Article  CAS  Google Scholar 

  41. Wu, J. K.; Li, Q. F.; Xue, G. B.; Chen, H. Z.; Li, H. Y. Preparation of single-crystalline heterojunctions for organic electronics. Adv. Mater. 2017, 29, 1606101.

    Article  Google Scholar 

  42. Zhao, X. M.; Liu, T. J.; Liu, H. L.; Wang, S. R.; Li, X. G.; Zhang, Y. T.; Hou, X. Y.; Liu, Z. L.; Shi, W. D.; Dennis, T. J. S. Organic single-crystalline p-n heterojunctions for high-performance ambipolar field-effect transistors and broadband photodetectors. ACS Appl. Mater. Interfaces 2018, 10, 42715–42722.

    Article  CAS  Google Scholar 

  43. Anthony, J. E.; Brooks, J. S.; Eaton, D. L.; Parkin, S. R. Functionalized pentacene: Improved electronic properties from control of solid-state order. J. Am. Chem. Soc. 2001, 123, 9482–9483.

    Article  CAS  Google Scholar 

  44. Yu, X. X.; Zheng, L.; Li, J. F.; Wang, L.; Han, J. L.; Chen, H. Y.; Zhang, X. T.; Hu, W. P. A new asymmetric anthracene derivative with high mobility. Sci. China Chem. 2019, 62, 251–255.

    Article  CAS  Google Scholar 

  45. Liu, J.; Zhang, H. T.; Dong, H. L.; Meng, L. Q.; Jiang, L. F.; Jiang, L.; Wang, Y.; Yu, J. S.; Sun, Y. M.; Hu, W. P. et al. High mobility emissive organic semiconductor. Nat. Commun. 2015, 6, 10032.

    Article  CAS  Google Scholar 

  46. Yang, T. F.; Wang, X.; Zheng, B. Y.; Qi, Z. Y.; Ma, C.; Fu, Y. H.; Fu, Y. P.; Hautzinger, M. P.; Jiang, Y.; Li, Z. W. et al. Ultrahighperformance optoelectronics demonstrated in ultrathin perovskite-based vertical semiconductor heterostructures. ACS Nano 2019, 13, 7996–8003.

    Article  CAS  Google Scholar 

  47. Zheng, W. H.; Zheng, B. Y.; Yan, C. L.; Liu, Y.; Sun, X. X.; Qi, Z. Y.; Yang, T. F.; Jiang, Y.; Huang, W.; Fan, P. et al. Direct vapor growth of 2D vertical heterostructures with tunable band alignments and interfacial charge transfer behaviors. Adv. Sci. 2019, 6, 1802204.

    Article  Google Scholar 

  48. Zhang, L. L.; Sharma, A.; Zhu, Y.; Zhang, Y. H.; Wang, B. W.; Dong, M. H.; Nguyen, H. T.; Wang, Z.; Wen, B.; Cao, Y. J. et al. Efficient and layer-dependent exciton pumping across atomically thin organic-inorganic type-I heterostructures. Adv. Mater. 2018, 30, 1803986.

    Article  Google Scholar 

  49. Li, J.; Zhou, K.; Liu, J.; Zhen, Y. G.; Liu, L.; Zhang, J. D.; Dong, H. L.; Zhang, X. T.; Jiang, L.; Hu, W. P. Aromatic extension at 2, 6-positions of anthracene toward an elegant strategy for organic semiconductors with efficient charge transport and strong solid state emission. J. Am. Chem. Soc. 2017, 139, 17261–17264.

    Article  CAS  Google Scholar 

  50. Singh, J.; Narayan, M.; Ompong, D.; Zhu, F. R. Dissociation of charge transfer excitons at the donor-acceptor interface in bulk heterojunction organic solar cells. J. Mater. Sci: Mater. Electron. 2017, 28, 7095–7099.

    CAS  Google Scholar 

  51. Gao, Y. H.; Yi, Y.; Wang, X. W.; Meng, H.; Lei, D. Y.; Yu, X. F.; Chu, P. K.; Li, J. A novel hybrid-layered organic phototransistor enables efficient intermolecular charge transfer and carrier transport for ultrasensitive photodetection. Adv. Mater. 2019, 31, 1900763.

    Article  Google Scholar 

  52. Qi, Z. Y.; Yang, T. F.; Li, D.; Li, H. L.; Wang, X.; Zhang, X. H.; Li, F.; Zheng, W. H.; Fan, P.; Zhuang, X. J. et al. High-responsivity two-dimensional p-PbI2/n-WS2 vertical heterostructure photodetectors enhanced by photogating effect. Mater. Horiz. 2019, 6, 1474–1480.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the National Natural Science Foundation of China (Nos. 51873148, 52073206, 51633006, and 61704038), the Natural Science Foundation of Tianjin City (No. 18JC-YBJC18400), and Strategic Priority Research Program of Chinese Academy of Sciences (XDB36000000).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinfeng Liu or Rongjin Li.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, X., Yao, J., Zhang, L. et al. Few-layered organic single-crystalline heterojunctions for high-performance phototransistors. Nano Res. 15, 2667–2673 (2022). https://doi.org/10.1007/s12274-021-3730-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3730-3

Keywords

Navigation