Skip to main content

Ultrathin-shell epitaxial Ag@Au core-shell nanowires for high-performance and chemically-stable electronic, optical, and mechanical devices

Abstract

Silver nanowires (AgNWs) hold great promise for applications in wearable electronics, flexible solar cells, chemical and biological sensors, photonic/plasmonic circuits, and scanning probe microscopy (SPM) due to their unique plasmonic, mechanical, and electronic properties. However, the lifetime, reliability, and operating conditions of AgNW-based devices are significantly restricted by their poor chemical stability, limiting their commercial potentials. Therefore, it is crucial to create a reliable oxidation barrier on AgNWs that provides long-term chemical stability to various optical, electrical, and mechanical devices while maintaining their high performance. Here we report a room-temperature solution-phase approach to grow an ultra-thin, epitaxial gold coating on AgNWs to effectively shield the Ag surface from environmental oxidation. The Ag@Au core-shell nanowires (Ag@Au NWs) remain stable in air for over six months, under elevated temperature and humidity (80 °C and 100% humidity) for twelve weeks, in physiological buffer solutions for three weeks, and can survive overnight treatment of an oxidative solution (2% H2O2). The Ag@Au core-shell NWs demonstrated comparable performance as pristine AgNWs in various electronic, optical, and mechanical devices, such as transparent mesh electrodes, surface-enhanced Raman spectroscopy (SERS) substrates, plasmonic waveguides, plasmonic nanofocusing probes, and high-aspect-ratio, high-resolution atomic force microscopy (AFM) probes. These Au@Ag core-shell NWs offer a universal solution towards chemically-stable AgNW-based devices without compromising material property or device performance.

References

  1. [1]

    Li, W. W.; Yang, S.; Shamim, A. Screen printing of silver nanowires: Balancing conductivity with transparency while maintaining flexibility and stretchability. npj Flex. Electron. 2019, 3, 13.

    Article  CAS  Google Scholar 

  2. [2]

    Lee, E.; Ahn, J.; Kwon, H. C.; Ma, S.; Kim, K.; Yun, S.; Moon, J. All-solution-processed silver nanowire window electrode-based flexible perovskite solar cells enabled with amorphous metal oxide protection. Adv. Energy Mater. 2018, 8, 1702182.

    Article  CAS  Google Scholar 

  3. [3]

    Chen, C. R.; Qin, H. L.; Cong, H. P.; Yu, S. H. A highly stretchable and real-time healable supercapacitor. Adv. Mater. 2019, 31, 1900573.

    Article  CAS  Google Scholar 

  4. [4]

    Ma, Z. L.; Kang, S. L.; Ma, J. Z.; Shao, L.; Wei, A. J.; Liang, C. B.; Gu, J. W.; Yang, B.; Dong, D. D.; Wei, L. F. et al. High-performance and rapid-response electrical heaters based on ultraflexible, heat-resistant, and mechanically strong aramid nanofiber/Ag nanowire nanocomposite papers. ACS Nano 2019, 13, 7578–7590.

    Article  CAS  Google Scholar 

  5. [5]

    Chung, W. H.; Park, S. H.; Joo, S. J.; Kim, H. S. UV-assisted flash light welding process to fabricate silver nanowire/graphene on a PET substrate for transparent electrodes. Nano Res. 2018, 11, 2190–2203.

    Article  CAS  Google Scholar 

  6. [6]

    Araki, T.; Jiu, J. T.; Nogi, M.; Koga, H.; Nagao, S.; Sugahara, T.; Suganuma, K. Low haze transparent electrodes and highly conducting air dried films with ultra-long silver nanowires synthesized by one-step polyol method. Nano Res. 2014, 7, 236–245.

    Article  CAS  Google Scholar 

  7. [7]

    Kim, S.; Yan, R. X. Recent developments in photonic, plasmonic and hybrid nanowire waveguides. J. Mater. Chem. C 2018, 6, 11795–11816.

    Article  CAS  Google Scholar 

  8. [8]

    Qin, Q. Q.; Yin, S.; Cheng, G. M.; Li, X. Y.; Chang, T. H.; Richter, G.; Zhu, Y.; Gao, H. J. Recoverable plasticity in penta-twinned metallic nanowires governed by dislocation nucleation and retraction. Nat. Commun. 2015, 6, 5983.

    Article  CAS  Google Scholar 

  9. [9]

    Jo, H. S.; An, S.; Park, C. W.; Woo, D. Y.; Yarin, A. L.; Yoon, S. S. Wearable, stretchable, transparent all-in-one soft sensor formed from supersonically sprayed silver nanowires. ACS Appl. Mater. Interfaces 2019, 11, 40232–40242.

    Article  CAS  Google Scholar 

  10. [10]

    Kim, T.; Kang, S.; Heo, J.; Cho, S.; Kim, J. W.; Choe, A.; Walker, B.; Shanker, R.; Ko, H.; Kim, J. Y. Nanoparticle-enhanced silver-nanowire plasmonic electrodes for high-performance organic optoelectronic devices. Adv. Mater. 2018, 30, 1800659.

    Article  CAS  Google Scholar 

  11. [11]

    Liu, Q. S.; Kim, S.; Ma, X. Z.; Yu, N.; Zhu, Y. Z.; Deng, S. Y.; Yan, R. X.; Zhao, H. J.; Liu, M. Ultra-sharp and surfactant-free silver nanowire for scanning tunneling microscopy and tip-enhanced Raman spectroscopy. Nanoscale 2019, 11, 7790–7797.

    Article  CAS  Google Scholar 

  12. [12]

    Liu, J. W.; Wang, J. L.; Huang, W. R.; Yu, L.; Ren, X. F.; Wen, W. C.; Yu, S. H. Ordering Ag nanowire arrays by a glass capillary: A portable, reusable and durable SERS substrate. Sci. Rep. 2012, 2, 987.

    Article  CAS  Google Scholar 

  13. [13]

    Kim, S.; Yu, N.; Ma, X. Z.; Zhu, Y. Z.; Liu, Q. S.; Liu, M.; Yan, R. X. High external-efficiency nanofocusing for lens-free near-field optical nanoscopy. Nat. Photonics 2019, 13, 636–643.

    Article  CAS  Google Scholar 

  14. [14]

    Ma, X. Z.; Zhu, Y. Z.; Yu, N.; Kim, S.; Liu, Q. S.; Apontti, L.; Xu, D.; Yan, R. X.; Liu, M. Toward high-contrast atomic force microscopy-tip-enhanced raman spectroscopy imaging: Nanoantenna-mediated remote-excitation on sharp-tip silver nanowire probes. Nano Lett. 2019, 19, 100–107.

    Article  CAS  Google Scholar 

  15. [15]

    Ma, X. Z.; Zhu, Y. Z.; Kim, S.; Liu, Q. S.; Byrley, P.; Wei, Y.; Zhang, J.; Jiang, K. L.; Fan, S. S.; Yan, R. X. et al. Sharp-tip silver nanowires mounted on cantilevers for high-aspect-ratio high-resolution imaging. Nano Lett. 2016, 16, 6896–6902.

    Article  CAS  Google Scholar 

  16. [16]

    Choo, D. C.; Kim, T. W. Degradation mechanisms of silver nanowire electrodes under ultraviolet irradiation and heat treatment. Sci. Rep. 2017, 7, 1696.

    Article  CAS  Google Scholar 

  17. [17]

    Elechiguerra, J. L.; Larios-Lopez, L.; Liu, C.; Garcia-Gutierrez, D.; Camacho-Bragado, A.; Yacaman, M. J. Corrosion at the nanoscale: The case of silver nanowires and nanoparticles. Chem. Mater. 2005, 17, 6042–6052.

    Article  CAS  Google Scholar 

  18. [18]

    Joo, Y.; Byun, J.; Seong, N.; Ha, J.; Kim, H.; Kim, S.; Kim, T.; Im, H.; Kim, D.; Hong, Y. Silver nanowire-embedded PDMS with a multiscale structure for a highly sensitive and robust flexible pressure sensor. Nanoscale 2015, 7, 6208–6215.

    Article  CAS  Google Scholar 

  19. [19]

    Li, Y. X.; Han, D. Y.; Jiang, C. J.; Xie, E. Q.; Han, W. H. A facile realization scheme for tactile sensing with a structured silver nanowire-PDMS composite. Adv. Mater. Technol. 2019, 4, 1800504.

    Article  CAS  Google Scholar 

  20. [20]

    Oh, J. Y.; Lee, D.; Hong, S. H. Ice-templated bimodal-porous silver nanowire/PDMS nanocomposites for stretchable conductor. ACS Appl. Mater. Interfaces 2018, 10, 21666–21671.

    Article  CAS  Google Scholar 

  21. [21]

    Dan, L.; Shi, S.; Chung, H. J.; Elias, A. Porous polydimethylsiloxane-silver nanowire devices for wearable pressure sensors. ACS Appl. Nano Mater. 2019, 2, 4869–4878.

    Article  CAS  Google Scholar 

  22. [22]

    Cheng, C.; Xu, X. H.; Lei, H. X.; Li, B. J. Plasmon-assisted trapping of nanoparticles using a silver-nanowire-embedded PMMA nanofiber. Sci. Rep. 2016, 6, 20433.

    Article  CAS  Google Scholar 

  23. [23]

    Li, W. W.; Meredov, A.; Shamim, A. Coat-and-print patterning of silver nanowires for flexible and transparent electronics. Npj Flex. Electron. 2019, 3, 19.

    Article  CAS  Google Scholar 

  24. [24]

    Nair, N. M.; Pakkathillam, J. K.; Kumar, K.; Arunachalam, K.; Ray, D.; Swaminathan, P. Printable silver nanowire and PEDOT:PSS nanocomposite ink for flexible transparent conducting applications. ACS Appl. Electron. Mater. 2020, 2, 1000–1010.

    Article  CAS  Google Scholar 

  25. [25]

    Thomas, J. P.; Rahman, M. A.; Srivastava, S.; Kang, J. S.; McGillivray, D.; Abd-Ellah, M.; Heinig, N. F.; Leung, K. T. Highly conducting hybrid silver-nanowire-embedded poly (3,4-ethylenedioxythiophene): Poly (styrenesulfonate) for high-efficiency planar silicon/organic heterojunction solar cells. ACS Nano 2018, 12, 9495–9503.

    Article  CAS  Google Scholar 

  26. [26]

    Li, S. Y.; Chen, S. J.; Zhuo, B. G.; Li, Q. F.; Liu, W. J.; Guo, X. J. Flexible ammonia sensor based on PEDOT:PSS/Silver nanowire composite film for meat freshness monitoring. IEEE Electron Device Lett. 2017, 38, 975–978.

    Article  CAS  Google Scholar 

  27. [27]

    Ricciardulli, A. G.; Yang, S.; Wetzelaer, G. J. A. H.; Feng, X. L.; Blom, P. W. M. Hybrid silver nanowire and graphene-based solution-processed transparent electrode for organic optoelectronics. Adv. Funct. Mater. 2018, 28, 1706010.

    Article  CAS  Google Scholar 

  28. [28]

    Yang, Y.; Chen, S.; Li, W. L.; Li, P.; Ma, J. G.; Li, B. S.; Zhao, X. N.; Ju, Z. S.; Chang, H. C.; Xiao, L. et al. Reduced graphene oxide conformally wrapped silver nanowire networks for flexible transparent heating and electromagnetic interference shielding. ACS Nano 2020, 14, 8754–8765.

    Article  CAS  Google Scholar 

  29. [29]

    Cao, M. H.; Wang, M. Q.; Li, L.; Qiu, H. W.; Padhiar, M. A.; Yang, Z. Wearable rGO-Ag NW@cotton fiber piezoresistive sensor based on the fast charge transport channel provided by Ag nanowire. Nano Energy 2018, 50, 528–535.

    Article  CAS  Google Scholar 

  30. [30]

    Huang, G. W.; Li, N.; Liu, Y.; Qu, C. B.; Feng, Q. P.; Xiao, H. M. Binder-free graphene/silver nanowire gel-like composite with tunable properties and multifunctional applications. ACS Appl. Mater. Interfaces 2019, 11, 15028–15037.

    Article  CAS  Google Scholar 

  31. [31]

    Fang, Y. S.; Wu, Z. C.; Li, J.; Jiang, F. Y.; Zhang, K.; Zhang, Y. L.; Zhou, Y. H.; Zhou, J.; Hu, B. High-performance hazy silver nanowire transparent electrodes through diameter tailoring for semitransparent photovoltaics. Adv. Funct. Mater. 2018, 28, 1705409.

    Article  CAS  Google Scholar 

  32. [32]

    Park, M.; Lee, S. H.; Kim, D.; Kang, J.; Lee, J. Y.; Han, S. M. Fabrication of a combustion-reacted high-performance ZnO electron transport layer with silver nanowire electrodes for organic solar cells. ACS Appl. Mater. Interfaces 2018, 10, 7214–7222.

    Article  CAS  Google Scholar 

  33. [33]

    Kang, H.; Choi, S. R.; Kim, Y. H.; Kim, J. S.; Kim, S.; An, B. S.; Yang, C. W.; Myoung, J. M.; Lee, T. W.; Kim, J. G. et al. Electroplated silver-nickel core-shell nanowire network electrodes for highly efficient perovskite nanoparticle light-emitting diodes. ACS Appl. Mater. Interfaces 2020, 12, 39479–39486.

    Article  CAS  Google Scholar 

  34. [34]

    Zhang, L. W.; Ji, Y.; Qiu, Y. J.; Xu, C. W.; Liu, Z. G.; Guo, Q. Q. Highly thermal-stable and transparent silver nanowire conductive films via magnetic assisted electrodeposition of Ni. J. Mater. Chem. C 2018, 6, 4887–4894.

    Article  CAS  Google Scholar 

  35. [35]

    Zhou, K. L.; Zhang, Q. Q.; Wang, Z. L.; Wang, C. H.; Han, C. B.; Ke, X. X.; Zheng, Z. L.; Wang, H.; Liu, J. B.; Yan, H. A setaria-inflorescence-structured catalyst based on nickel-cobalt wrapped silver nanowire conductive networks for highly efficient hydrogen evolution. J. Mater. Chem. A 2019, 7, 26566–26573.

    Article  CAS  Google Scholar 

  36. [36]

    Martinez, P. M.; Ishteev, A.; Fahimi, A.; Velten, J.; Jurewicz, I.; Dalton, A. B.; Collins, S.; Baughman, R. H.; Zakhidov, A. A. Silver nanowires on carbon nanotube aerogel sheets for flexible, transparent electrodes. ACS Appl. Mater. Interfaces 2019, 11, 32235–32243.

    Article  CAS  Google Scholar 

  37. [37]

    Lee, J.; Woo, J. Y.; Kim, J. T.; Lee, B. Y.; Han, C. S. Synergistically enhanced stability of highly flexible silver nanowire/carbon nanotube hybrid transparent electrodes by plasmonic welding. ACS Appl. Mater. Interfaces 2014, 6, 10974–10980.

    Article  CAS  Google Scholar 

  38. [38]

    Sun, Y. N.; Chang, M. J.; Meng, L. X.; Wan, X. J.; Gao, H. H.; Zhang, Y. M.; Zhao, K.; Sun, Z. H.; Li, C. X.; Liu, S. R. et al. Flexible organic photovoltaics based on water-processed silver nanowire electrodes. Nat. Electron. 2019, 2, 513–520.

    Article  CAS  Google Scholar 

  39. [39]

    Khan, A.; Nguyen, V. H.; Muñoz-Rojas, D.; Aghazadehchors, S.; Jiménez, C.; Nguyen, N. D.; Bellet, D. Stability enhancement of silver nanowire networks with conformal ZnO coatings deposited by atmospheric pressure spatial atomic layer deposition. ACS Appl. Mater. Interfaces 2018, 10, 19208–19217.

    Article  CAS  Google Scholar 

  40. [40]

    Nguyen, V. H.; Resende, J.; Papanastasiou, D. T.; Fontanals, N.; Jiménez, C.; Muñoz-Rojas, D.; Bellet, D. Low-cost fabrication of flexible transparent electrodes based on Al doped ZnO and silver nanowire nanocomposites: Impact of the network density. Nanoscale 2019, 11, 12097–12107.

    Article  CAS  Google Scholar 

  41. [41]

    Zhao, Y.; Wang, X. J.; Yang, S. Z.; Kuttner, E.; Taylor, A. A.; Salemmilani, R.; Liu, X.; Moskovits, M.; Wu, B. H.; Dehestani, A. et al. Protecting the nanoscale properties of ag nanowires with a solution-grown SnO2 monolayer as corrosion inhibitor. J. Am. Chem. Soc. 2019, 141, 13977–13986.

    Article  CAS  Google Scholar 

  42. [42]

    Yang, Y.; Dong, R. Z.; Zhu, Y. L.; Li, H. S.; Zhang, H.; Fan, X. M.; Chang, H. L. High-performance direct hydrogen peroxide fuel cells (DHPFCs) with silver nanowire-graphene hybrid aerogel as highly-conductive mesoporous electrodes. Chem. Eng. J. 2020, 381, 122749.

    Article  CAS  Google Scholar 

  43. [43]

    Yang, M. X.; Hood, Z. D.; Yang, X.; Chi, M. F.; Xia, Y. N. Facile synthesis of Ag@Au core-sheath nanowires with greatly improved stability against oxidation. Chem. Commun. 2017, 53, 1965–1968.

    Article  CAS  Google Scholar 

  44. [44]

    Choi, S.; Han, S. I.; Jung, D.; Hwang, H. J.; Lim, C.; Bae, S.; Park, O. K.; Tschabrunn, C. M.; Lee, M.; Bae, S. Y. et al. Highly conductive, stretchable and biocompatible Ag-Au core-sheath nanowire composite for wearable and implantable bioelectronics. Nat. Nanotechnol. 2018, 13, 1048–1056.

    Article  CAS  Google Scholar 

  45. [45]

    Huang, Z. L.; Meng, G. W.; Hu, X. Y.; Pan, Q. J.; Huo, D. X.; Zhou, H. J.; Ke, Y.; Wu, N. Q. Plasmon-tunable Au@Ag core-shell spiky nanoparticles for surface-enhanced Raman scattering. Nano Res. 2019, 12, 449–455.

    Article  CAS  Google Scholar 

  46. [46]

    Khlebtsov, B.; Khanadeev, V.; Khlebtsov, N. Surface-enhanced Raman scattering inside Au@Ag core/shell nanorods. Nano Res. 2016, 9, 2303–2318.

    Article  CAS  Google Scholar 

  47. [47]

    Wang, D. M.; Hua, H. M.; Liu, Y.; Tang, H. R.; Li, Y. X. Single Ag nanowire electrodes and single Pt@Ag nanowire electrodes: Fabrication, electrocatalysis, and surface-enhanced raman scattering applications. Anal. Chem. 2019, 91, 4291–4295.

    Article  CAS  Google Scholar 

  48. [48]

    Zhang, L.; Zhang, Y.; Ahn, J.; Wang, X.; Qin, D. Defect-assisted deposition of Au on Ag for the fabrication of core-shell nanocubes with outstanding chemical and thermal stability. Chem. Mater. 2019, 31, 1057–1065.

    Article  CAS  Google Scholar 

  49. [49]

    Au, L.; Lu, X. M.; Xia, Y. N. A comparative study of galvanic replacement reactions involving Ag nanocubes and AuCl2 or AuCl4. Adv. Mater. 2008, 20, 2517–2522.

    Article  CAS  Google Scholar 

  50. [50]

    Niu, Z. Q.; Cui, F.; Yu, Y.; Becknell, N.; Sun, Y. C.; Khanarian, G.; Kim, D.; Dou, L.; Dehestani, A.; Schierle-Arndt, K. et al. Ultrathin epitaxial Cu@Au core-shell nanowires for stable transparent conductors. J. Am. Chem. Soc. 2017, 139, 7348–7354.

    Article  CAS  Google Scholar 

  51. [51]

    Gao, C. B.; Lu, Z. D.; Liu, Y.; Zhang, Q.; Chi, M. F.; Cheng, Q.; Yin, Y. D. Highly stable silver nanoplates for surface plasmon resonance biosensing. Angew. Chem., Int. Ed. 2012, 51, 5629–5633.

    Article  CAS  Google Scholar 

  52. [52]

    Xue, C.; Chen, X.; Hurst, S. J.; Mirkin, C. A. Self-assembled monolayer mediated silica coating of silver triangular nanoprisms. Adv. Mater. 2007, 19, 4071–4074.

    Article  CAS  Google Scholar 

  53. [53]

    Gao, C. B.; Zhang, Q.; Lu, Z. D.; Yin, Y. D. Templated synthesis of metal nanorods in silica nanotubes. J. Am. Chem. Soc. 2011, 133, 19706–19709.

    Article  CAS  Google Scholar 

  54. [54]

    Hu, L. B.; Kim, H. S.; Lee, J. Y.; Peumans, P.; Cui, Y. Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano 2010, 4, 2955–2963.

    Article  CAS  Google Scholar 

  55. [55]

    Liu, H. P.; Liu, T. Z.; Zhang, L.; Han, L.; Gao, C. B.; Yin, Y. D. Etching-free epitaxial growth of gold on silver nanostructures for high chemical stability and plasmonic activity. Adv. Funct. Mater. 2015, 25, 5435–5443.

    Article  CAS  Google Scholar 

  56. [56]

    Yang, Y.; Liu, J. Y.; Fu, Z. W.; Qin, D. Galvanic replacement-free deposition of Au on Ag for core-shell nanocubes with enhanced chemical stability and SERS activity. J. Am. Chem. Soc. 2014, 136, 8153–8156.

    Article  CAS  Google Scholar 

  57. [57]

    Choi, Y.; Hong, S.; Liu, L. C.; Kim, S. K.; Park, S. Galvanically replaced hollow Au-Ag nanospheres: Study of their surface plasmon resonance. Langmuir 2012, 28, 6670–6676.

    Article  CAS  Google Scholar 

  58. [58]

    Cui, F.; Yu, Y.; Dou, L. T.; Sun, J. W.; Yang, Q.; Schildknecht, C.; Schierle-Arndt, K.; Yang, P. D. Synthesis of ultrathin copper nanowires using tris(trimethylsilyl)silane for high-performance and low-haze transparent conductors. Nano Lett. 2015, 15, 7610–7615.

    Article  CAS  Google Scholar 

  59. [59]

    Rathmell, A. R.; Wiley, B. J. The synthesis and coating of long, thin copper nanowires to make flexible, transparent conducting films on plastic substrates. Adv. Mater. 2011, 23, 4798–4803.

    Article  CAS  Google Scholar 

  60. [60]

    Hecht, D. S.; Heintz, A. M.; Lee, R.; Hu, L. B.; Moore, B.; Cucksey, C.; Risser, S. High conductivity transparent carbon nanotube films deposited from superacid. Nanotechnology 2011, 22, 075201.

    Article  CAS  Google Scholar 

  61. [61]

    Vosgueritchian, M.; Lipomi, D. J.; Bao, Z. N. Highly conductive and transparent PEDOT:PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes. Adv. Funct. Mater. 2012, 22, 421–428.

    Article  CAS  Google Scholar 

  62. [62]

    Ye, S. R.; Rathmell, A. R.; Stewart, I. E.; Ha, Y. C.; Wilson, A. R.; Chen, Z. F.; Wiley, B. J. A rapid synthesis of high aspect ratio copper nanowires for high-performance transparent conducting films. Chem. Commun. 2014, 50, 2562–2564.

    Article  CAS  Google Scholar 

  63. [63]

    Yan, R. X.; Pausauskie, P.; Huang, J. X.; Yang, P. D. Direct photonic-plasmonic coupling and routing in single nanowires. Proc. Natl. Acad. Sci. USA 2009, 106, 21045–21050.

    Article  Google Scholar 

  64. [64]

    Kim, S.; Bailey, S.; Liu, M.; Yan, R. X. Decoupling co-existing surface plasmon polariton (SPP) modes in a nanowire plasmonic waveguide for quantitative mode analysis. Nano Res. 2017, 10, 2395–2404.

    Article  CAS  Google Scholar 

  65. [65]

    Yan, R. X.; Park, J. H.; Choi, Y.; Heo, C. J.; Yang, S. M.; Lee, L. P.; Yang, P. D. Nanowire-based single-cell endoscopy. Nat. Nanotechnol. 2012, 7, 191–196.

    Article  CAS  Google Scholar 

  66. [66]

    Lee, W.; Kang, B. H.; Yang, H.; Park, M.; Kwak, J. H.; Chung, T.; Jeong, Y.; Kim, B. K.; Jeong, K. H. Spread spectrum SERS allows label-free detection of attomolar neurotransmitters. Nat. Commun. 2021, 12, 159.

    Article  CAS  Google Scholar 

  67. [67]

    Yeh, Y. T.; Gulino, K.; Zhang, Y. H.; Sabestien, A.; Chou, T. W.; Zhou, B.; Lin, Z.; Albert, I.; Lu, H. G.; Swaminathan, V. et al. A rapid and label-free platform for virus capture and identification from clinical samples. Proc. Natl. Acad. Sci. USA 2020, 117, 895–901.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the National Science Foundation under gant No. CHE-1654794. The authors acknowledge Prof. Yadong Yin from the Department of Chemistry, UC Riverside for helpful discussion.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ruoxue Yan.

Electronic Supplementary Material

12274_2021_3718_MOESM1_ESM.pdf

Ultrathin-shell epitaxial Ag@Au core-shell nanowires for high-performance and chemically-stable electronic, optical, and mechanical devices

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Kim, S., Ma, X. et al. Ultrathin-shell epitaxial Ag@Au core-shell nanowires for high-performance and chemically-stable electronic, optical, and mechanical devices. Nano Res. 14, 4294–4303 (2021). https://doi.org/10.1007/s12274-021-3718-z

Download citation

Keywords

  • epitaxial growth
  • core-shell nanowire
  • plasmonic waveguides
  • atomic force microscopy (AFM) probe
  • transparent electrode
  • wearable electronics