Skip to main content

Al-driven peculiarities of local coordination and magnetic properties in single-phase Alx-CrFeCoNi high-entropy alloys

Abstract

Modern design of superior multi-functional alloys composed of several principal components requires in-depth studies of their local structure for developing desired macroscopic properties. Herein, peculiarities of atomic arrangements on the local scale and electronic states of constituent elements in the single-phase face-centered cubic (fcc)- and body-centered cubic (bcc)-structured high-entropy Alx-CrFeCoNi alloys (x = 0.3 and 3, respectively) are explored by element-specific X-ray absorption spectroscopy in hard and soft X-ray energy ranges. Simulations based on the reverse Monte Carlo approach allow to perform a simultaneous fit of extended X-ray absorption fine structure spectra recorded at K absorption edges of each 3d constituent and to reconstruct the local environment within the first coordination shells of absorbers with high precision. The revealed unimodal and bimodal distributions of all five elements are in agreement with structure-dependent magnetic properties of studied alloys probed by magnetometry. A degree of surface atoms oxidation uncovered by soft X-rays suggests different kinetics of oxide formation for each type of constituents and has to be taken into account. X-ray magnetic circular dichroism technique employed at L2.3 absorption edges of transition metals demonstrates reduced magnetic moments of 3d metal constituents in the sub-surface region of in situ cleaned fcc-structured Al0.3-CrFeCoNi compared to their bulk values. Extended to nanostructured versions of multicomponent alloys, such studies would bring new insights related to effects of high entropy mixing on low dimensions.

References

  1. Cantor, B.; Chang, I. T. H.; Knight, P.; Vincent, A. J. B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 2004, 375-377, 213–218.

    Article  CAS  Google Scholar 

  2. Yeh, J. W. Recent progress in high-entropy alloys. Ann. Chim. Sci. Mat. 2006, 31, 633–648.

    Article  CAS  Google Scholar 

  3. Ye, Y. F.; Wang, Q.; Lu, J.; Liu, C. T.; Yang, Y. High-entropy alloy: Challenges and prospects. Mater Today 2016, 19, 349–362.

    Article  CAS  Google Scholar 

  4. George, E. P.; Raabe, D.; Ritchie, R. O. High-entropy alloys. Nat. Rev. Mater. 2019, 4, 515–534.

    Article  CAS  Google Scholar 

  5. Yeh, J. W.; Lin, S. J.; Chin, T. S.; Gan, J. Y.; Chen, S. K.; Shun, T. T.; Tsau C. H.; Chou S. Y. Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements. Metall. Mater. Trans. A 2004, 35, 2533–2536.

    Article  Google Scholar 

  6. Dahlborg, U.; Cornide, J.; Calvo-Dahlborg, M.; Hansen, T. C.; Fitch, A.; Leong, Z.; Chambreland, S.; Goodall, R. Structure of some CoCrFeNi and CoCrFeNiPd multicomponent HEA alloys by diffraction techniques. J. Alloys Compd. 2016, 681, 330–341.

    Article  CAS  Google Scholar 

  7. Santodonato, L. J.; Zhang, Y.; Feygenson, M.; Parish, C. M.; Gao, M. C.; Weber, R. J. K.; Neuefeind, J. C.; Tang, Z.; Liaw, P. K. Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy. Nat. Commun. 2015, 6, 5964.

    Article  CAS  Google Scholar 

  8. Li, D. Y.; Li, C. X.; Feng, T.; Zhang, Y. D.; Sha, G.; Lewandowski, J. J.; Liaw, P. K.; Zhang, Y. High-entropy Al0.3CoCrFeNi alloy fibers with high tensile strength and ductility at ambient and cryogenic temperatures. Acta Mater. 2017, 123, 285–294.

    Article  CAS  Google Scholar 

  9. Li, Z. Z.; Zhao, S. T.; Ritchie, R. O.; Meyers, M. A. Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys. Prog. Mater. Sci. 2019, 102, 296–345.

    Article  CAS  Google Scholar 

  10. Schneeweiss, O.; Friák, M.; Dudová, M.; Holec, D.; Šob, M.; Kriegner, D.; Holý, V.; Beran, P.; George, E. P.; Neugebauer, J. et al. Magnetic properties of the CrMnFeCoNi high-entropy alloy. Phys. Rev. B 2017, 96, 014437.

    Article  Google Scholar 

  11. Gaertner, D.; Abrahams, K.; Kottke, J.; Esin, V. A.; Steinbach, I.; Wilde, G.; Divinski S. V. Concentration-dependent atomic mobilities in FCC CoCrFeMnNi high-entropy alloys. Acta Mater. 2019, 166, 357–370.

    Article  CAS  Google Scholar 

  12. Gao, M. C.; Yeh, J. W.; Liaw, P. K.; Zhang, Y. High-Entropy Alloys: Fundamentals and Applications; Springer: Cham, 2016.

    Book  Google Scholar 

  13. Pogrebnjak, A. D.; Bagdasaryan, A. A.; Yakushchenko, I. V.; Beresnev, V. M. The structure and properties of high-entropy alloys and nitride coatings based on them. Russ. Chem. Rev. 2014, 83, 1027–1061.

    Article  CAS  Google Scholar 

  14. Marshal, A.; Pradeep, K. G.; Music, D.; Wang, L.; Petracic, O.; Schneider, J. M. Combinatorial evaluation of phase formation and magnetic properties of FeMnCoCrAl high entropy alloy thin film library. Sci. Rep. 2019, 9, 7864.

    Article  CAS  Google Scholar 

  15. Niu, C.; Zaddach, A. J.; Oni, A. A.; Sang, X.; Hurt, J. W.; LeBeau, J. M.; Koch, C. C.; Irving, D. L. Spin-driven ordering of Cr in the equiatomic high entropy alloy NiFeCrCo. Appl. Phys. Lett. 2015, 106, 161906.

    Article  CAS  Google Scholar 

  16. Meisenheimer, P. B.; Williams, L. D.; Sung, S. H.; Gim, J.; Shafer, P.; Kotsonis, G. N.; Maria, J. P.; Trassin, M.; Hovden, R.; Kioupakis, E. et al. Magnetic frustration control through tunable stereochemically driven disorder in entropy-stabilized oxides. Phys. Rev. Mater. 2019, 3, 104420.

    Article  CAS  Google Scholar 

  17. Kotsonis, G. N.; Meisenheimer, P. B.; Miao, L. X.; Roth, J.; Wang, B. M.; Shafer, P.; Engel-Herbert, R.; Alem, N.; Heron, J. T.; Rost, C. M. et al. Property and cation valence engineering in entropy-stabilized oxide thin films. Phys. Rev. Mater. 2020, 4, 100401(R).

    Article  Google Scholar 

  18. Tung, C. C.; Yeh, J. W.; Shun, T. T.; Chen, S. K.; Huang, Y. S.; Chen, H. C. On the elemental effect of AlCoCrCuFeNi high-entropy alloy system. Mater. Lett. 2007, 61, 1–5.

    Article  CAS  Google Scholar 

  19. Wang, W. R.; Wang, W. L.; Wang, S. C.; Tsai, Y. C.; Lai, C. H.; Yeh, J. W. Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys. Intermetallics 2012, 26, 44–51.

    Article  CAS  Google Scholar 

  20. Li, C.; Li, J. C.; Zhao, M.; Jiang, Q. Effect of aluminum contents on microstructure and properties of AlxCoCrFeNi alloys. J. Alloys Compd. 2010, 504, S515–S518.

    Article  Google Scholar 

  21. Kao, Y. F.; Chen, T. J.; Chen, S. K.; Yeh, J. W. Microstructure and mechanical property of as-cast, -homogenized, and-deformed AlxCoCrFeNi (0 ≤ x ≤ 2) high-entropy alloys. J. Alloys Compd. 2009, 488, 57–64.

    Article  CAS  Google Scholar 

  22. Cieslak, J.; Tobola, J.; Reissne, M. The effect of bcc/fcc phase preference on magnetic properties of AlxCrFeCoNi high entropy alloys. Intermetallics 2020, 118, 106672.

    Article  CAS  Google Scholar 

  23. Yusenko, K. V.; Riva, S.; Crichton, W. A.; Spektor, K.; Bykova, E.; Pakhomova, A.; Tudball, A.; Kupenko, I.; Rohrbach, A.; Klemme, S. et al. High-pressure high-temperature tailoring of high entropy alloys for extreme environments. J. Alloys Compd. 2018, 738, 491–500.

    Article  CAS  Google Scholar 

  24. Riva, S.; Mehraban, S.; Lavery, N. P.; Schwarzmüller, S.; Oeckler, O.; Brown, S. G. R.; Yusenko K. V. The effect of scandium ternary intergrain precipitates in Al-containing high-entropy alloys. Entropy 2018, 20, 488.

    Article  CAS  Google Scholar 

  25. Riva, S.; Tudball, A.; Mehraban, S.; Lavery, N. P.; Brown, S. G. R.; Yusenko, K. V. A novel high-entropy alloy-based composite material. J. Alloys Compd. 2018, 730, 544–551.

    Article  CAS  Google Scholar 

  26. Zhang, F. X.; Tong, Y.; Jin, K.; Bei, H. B.; Weber, W. J.; Zhang, Y. W. Lattice distortion and phase stability of Pd-doped NiCoFeCr solid-solution alloys. Entropy 2018, 20, 900.

    Article  CAS  Google Scholar 

  27. Zhang, F. X.; Tong, Y.; Jin, K.; Bei, H. B.; Weber, W. J.; Huq, A.; Lanzirotti, A.; Newville, M.; Pagan, D. C.; Ko, J. Y. P. Chemical complexity induced local structural distortion in NiCoFeMnCr high-entropy alloy. Mater. Res. Lett. 2018, 6, 450–455.

    Article  CAS  Google Scholar 

  28. Oh, H. S.; Ma, D. C.; Leyson, G. P.; Grabowski, B.; Park, E. S.; Körmann, F.; Raabe, D. Lattice distortions in the FeCoNiCrMn high entropy alloy studied by theory and experiment. Entropy 2016, 18, 321.

    Article  CAS  Google Scholar 

  29. Maulik, O.; Patra, N.; Bhattacharyya, D.; Jha, S. N.; Kumar, V. Local atomic structure investigation of AlFeCuCrMgx (0.5, 1, 1.7) high entropy alloys: X-ray absorption spectroscopy study. Solid State Commun. 2017, 252, 73–77.

    Article  CAS  Google Scholar 

  30. Körmann, F.; Ma, D.; Belyea, D. D.; Lucas, M. S.; Miller, C. W.; Grabowski, B.; Sluiter, M. H. F. “Treasure maps” for magnetic high-entropy-alloys from theory and experiment. Appl. Phys. Lett. 2015, 107, 142404.

    Article  CAS  Google Scholar 

  31. Cieslak, J.; Tobola, J.; Przewoznik, J.; Berent, K.; Dahlborg, U.; Cornide, J.; Mehraban, S.; Lavery, N.; Calvo-Dahlborg, M. Multiphase nature of sintered vs. arc-melted CrxAlFeCoNi high entropy alloys-experimental and theoretical study. J. Alloys Compd. 2019, 801, 511–519.

    Article  CAS  Google Scholar 

  32. Wang, H. L.; Gao, T. X.; Niu, J. Z.; Shi, P. J.; Xu, J.; Wang, Y. Microstructure, thermal properties, and corrosion behaviors of FeSiBAlNi alloy fabricated by mechanical alloying and spark plasma sintering. Int. J. Miner. Metall. Mater. 2016, 23, 77–82.

    Article  CAS  Google Scholar 

  33. Mohanty, S.; Gurao, N. P.; Biswas, K. Sinter ageing of equiatomic Al20Co20Cu20Zn20Ni20 high entropy alloy via mechanical alloying. Mater. Sci. Eng. A 2014, 617, 211–218.

    Article  CAS  Google Scholar 

  34. Zhang, A. J.; Han, J. S.; Meng, J. H.; Su, B.; Li, P. D. Rapid preparation of AlCoCrFeNi high entropy alloy by spark plasma sintering from elemental powder mixture. Mater. Lett. 2016, 181, 82–85.

    Article  CAS  Google Scholar 

  35. Tracy, C. L.; Park, S.; Rittman, D. R.; Zinkle, S. J.; Bei, H. B.; Lang, M.; Ewing, R. C.; Mao, W. L. High pressure synthesis of a hexagonal close-packed phase of the high-entropy alloy CrMnFeCoNi. Nat. Commun. 2017, 8, 15634.

    Article  CAS  Google Scholar 

  36. Riesemeier, H.; Ecker, K.; Görner, W.; Müller, B. R.; Radtke, M.; Krumrey, M. Layout and first XRF applications of the BAMline at BESSY II. X-Ray Spectrom. 2005, 34, 160–163.

    Article  CAS  Google Scholar 

  37. Timoshenko, J.; Kuzmin, A.; Purans, J. Reverse Monte Carlo modeling of thermal disorder in crystalline materials from EXAFS spectra. Comput. Phys. Commun. 2012, 183, 1237–1245.

    Article  CAS  Google Scholar 

  38. Timoshenko, J.; Kuzmin, A.; Purans, J. EXAFS study of hydrogen intercalation into ReO3 using the evolutionary algorithm. J. Phys. Condens. Matter 2014, 26, 055401.

    Article  CAS  Google Scholar 

  39. Kuzmin, A.; Chaboy, J. EXAFS and XANES analysis of oxides at the nanoscale. IUCrJ. 2014, 1, 571–589.

    Article  CAS  Google Scholar 

  40. Xaesa, v0.04; GitHub: 2021. https://github.com/aklnk/xaesa (accessed Nov 1, 2020).

  41. Ankudinov, A. L.; Ravel, B.; Rehr, J. J.; Conradson, S. D. Real-space multiple-scattering calculation and interpretation of X-ray-absorption near-edge structure. Phys. Rev. B. 1998, 58, 7565–7576.

    Article  CAS  Google Scholar 

  42. Rehr, J. J.; Albers, R. C. Theoretical approaches to X-ray absorption fine structure. Rev. Mod. Phys. 2000, 72, 621–654.

    Article  CAS  Google Scholar 

  43. Hedin, L.; Lundqvist, B. I. Explicit local exchange-correlation potentials. J. Phys. C: Solid State Phys. 1971, 4, 2064–2083.

    Article  Google Scholar 

  44. Noll, T.; Radu, F. In Proceedings o/ the Mechanical Engineering Design of Synchrotron Radiation Equipment and Instrumentation Conference (MEDSI’16), Barcelona, 2016 2017; pp 370–373.

  45. Englisch, U.; Rossner, H.; Maletta, H.; Bahrdt, J.; Sasaki, S.; Senf, F.; Sawhney, K. J. S.; Gudat, W. The elliptical undulator UE46 and its monochromator beam-line for structural research on nanomagnets at BESSY-II. Nucl. Instrum. Methods Phys. Res. A: Accel. Spectr., Detect. Ass. Equip. 2001, 467-468, 541–544.

    Article  CAS  Google Scholar 

  46. Schmitz, D.; Rossner, H.; Imperia, P.; Maletta, H.; Bahrdt, J.; Follath, R.; Frentrup, W.; Gaupp, A.; Holldack, K.; Mertins, H. C. et al. Commissioning results of the UE46-PGM beamline. BESSY Annual Report. 2002, 358–361.

  47. Poletti, M. G.; Branz, S.; Fiore, G.; Szost, B. A.; Crichton, W. A.; Battezzati, L. Equilibrium high entropy phases in X-NbTaTiZr (X = Al, V, Cr and Sn) multiprincipal component alloys. J. Alloys Compd. 2016, 655, 138–146.

    Article  CAS  Google Scholar 

  48. Timoshenko, J.; Kuzmin, A. Wavelet data analysis of EXAFS spectra. Comput. Phys. Commun. 2009, 180, 920–925.

    Article  CAS  Google Scholar 

  49. Funke, H.; Scheinost, A. C.; Chukalina, M. Wavelet analysis of extended X-ray absorption fine structure data. Phys. Rev. B 2005, 71, 094110.

    Article  CAS  Google Scholar 

  50. La Torre, E.; Smekhova, A.; Schmitz-Antoniak, C.; Ollefs, K.; Eggert, B.; Cöster, B.; Walecki, D.; Wilhelm, F.; Rogalev, A.; Lindner, J. et al. Local probe of irradiation-induced structural changes and orbital magnetism in Fe60Al40 thin films via an order-disorder phase transition. Phys. Rev. B 2018, 98, 024101.

    Article  CAS  Google Scholar 

  51. Antoniak, C. Extended X-ray absorption fine structure of bimetallic nanoparticles. Beilstein J. Nanotechnol. 2011, 2, 237–251.

    Article  CAS  Google Scholar 

  52. Kuzmin, A.; Timoshenko, J.; Kalinko, A.; Jonane, I.; Anspoks, A. Treatment of disorder effects in X-ray absorption spectra beyond the conventional approach. Radiat. Phys. Chem. 2020, 175, 108112.

    Article  CAS  Google Scholar 

  53. Nascimento, C. B.; Donatus, U.; Ríos, C. T.; Antunes, R. A. Electronic properties of the passive films formed on CoCrFeNi and CoCrFeNiAl high entropy alloys in sodium chloride solution. J. Mater. Res. Technol. 2020, 9, 13879–13892.

    Article  CAS  Google Scholar 

  54. Shi, Y. Z.; Yang, B.; Rack, P. D.; Guo, S. F.; Liaw, P. K.; Zhao, Y. High-throughput synthesis and corrosion behavior of sputter-deposited nanocrystalline Alx(CoCrFeNi)100-x combinatorial high-entropy alloys. Mater. Des. 2020, 195, 109018.

    Article  CAS  Google Scholar 

  55. Botton, G. A.; Guo, G. Y.; Temmerman, W. M.; Humphreys, C. J. Experimental and theoretical study of the electronic structure of Fe, Co, and Ni aluminides with the B2 structure. Phys. Rev. B 1996, 54, 1682–1691.

    Article  CAS  Google Scholar 

  56. Anne, B. R.; Shaik, S.; Tanaka, M.; Basu, A. A crucial review on recent updates of oxidation behavior in high entropy alloys. SN Appl. Sci. 2021, 3, 366.

    Article  CAS  Google Scholar 

  57. Chaudhary, V.; Soni, V.; Gwalani, B.; Ramanujan, R. V.; Banerjee, R. Influence of non-magnetic Cu on enhancing the low temperature magnetic properties and Curie temperature of FeCoNiCrCux high entropy alloys. Scr. Mater. 2020, 182, 99–103.

    Article  CAS  Google Scholar 

  58. Thole, B. T.; Carra, P.; Sette, F.; van der Laan, G. X-ray circular dichroism as a probe of orbital magnetization. Phys. Rev. Lett. 1992, 68, 1943–1946.

    Article  CAS  Google Scholar 

  59. Carra, P.; Thole, B. T.; Altarelli, M.; Wang, X. D. X-ray circular dichroism and local magnetic fields. Phys. Rev. Lett. 1993, 70, 694–697.

    Article  CAS  Google Scholar 

  60. Meyer, J.; Tombers, M.; van Wüllen, C.; Niedner-Schatteburg, G.; Peredkov, S.; Eberhardt, W.; Neeb, M.; Palutke, S.; Martins, M.; Wurth, W. The spin and orbital contributions to the total magnetic moments of free Fe, Co, and Ni clusters. J. Chem. Phys 2015, 143, 104302.

    Article  CAS  Google Scholar 

  61. Stöhr, J.; Siegmann, H. C. Magnetism: from Fundamentals to Nanoscale Dynamics; Springer-Verlag: Berlin, 2006.

    Google Scholar 

  62. Söderlind, P.; Eriksson, O.; Johansson, B.; Albers, R. C.; Boring, A. M. Spin and orbital magnetism in Fe-Co and Co-Ni alloys. Phys. Rev. B 1992, 45, 12911–12916.

    Article  Google Scholar 

  63. Wu, R. Q.; Freeman, A. J. Limitation of the magnetic-circular-dichroism spin sum rule for transition metals and importance of the magnetic dipole term. Phys. Rev. Lett. 1994, 73, 1994–1997.

    Article  CAS  Google Scholar 

  64. Langenberg, A.; Hirsch, K.; Ławicki, A.; Zamudio-Bayer, V.; Niemeyer, M.; Chmiela, P.; Langbehn, B.; Terasaki, A.; Issendorff, B. V.; Lau, J. T. Spin and orbital magnetic moments of size-selected iron, cobalt, and nickel clusters. Phys. Rev. B 2014, 90, 184420.

    Article  CAS  Google Scholar 

  65. Timoshenko, J.; Keller, K. R.; Frenkel, A. I. Determination of bimetallic architectures in nanometer-scale catalysts by combining molecular dynamics simulations with X-ray absorption spectroscopy. J. Chem.Phys. 2017, 146, 114201.

    Article  CAS  Google Scholar 

  66. Timoshenko, J.; Jeon, H. S.; Sinev, I.; Haase, F. T.; Herzog, A.; Cuenya, B. R. Linking the evolution of catalytic properties and structural changes in copper-zinc nanocatalysts using operando EXAFS and neural-networks. Chem. Sci. 2020, 11, 3727–3736.

    Article  CAS  Google Scholar 

  67. Yeh, J. W.; Chen, S. K.; Lin, S. J.; Gan, J. Y.; Chin, T. S.; Shun, T. T.; Tsau, C. H.; Chang, S. Y. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 2004, 6, 299–303.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Helmholtz-Zentrum Berlin for the provision of access to synchrotron radiation facilities and allocation of synchrotron radiation at the PM2-VEKMAG, BAMline, and UE46_PGM-1 beamlines of BESSY II at HZB as well as measurement time for magnetometry at HZB CoreLab for Quantum Materials. A. S. acknowledges personal funding from CALIPSOplus project (the Grant Agreement no. 730872 from the EU Framework Programme for Research and Innovation HORIZON 2020). The financial support for the VEKMAG project and the PM2-VEKMAG beamline by the German Federal Ministry for Education and Research (Nos. BMBF 05K10PC2, 05K10WR1, 05K10KE1) and by HZB is cordially acknowledged by all co-authors. Steffen Rudorff is acknowledged for technical support. Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART2.

Funding

Funding note: Open Access funding enabled and organized by Projekt DEAL

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alevtina Smekhova or Kirill V. Yusenko.

Electronic Supplementary Material

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Smekhova, A., Kuzmin, A., Siemensmeyer, K. et al. Al-driven peculiarities of local coordination and magnetic properties in single-phase Alx-CrFeCoNi high-entropy alloys. Nano Res. 15, 4845–4858 (2022). https://doi.org/10.1007/s12274-021-3704-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3704-5

Keywords

  • high-entropy alloys
  • reverse Monte Carlo
  • magnetism
  • element-specific spectroscopy
  • extended X-ray absorption fine structure (EXAFS)
  • X-ray magnetic circular dichroism (XMCD)