Skip to main content
Log in

Crosstalk between PC12 cells and endothelial cells in an artificial neurovascular niche constructed by a dual-functionalized self-assembling peptide nanofiber hydrogel

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The coordination between neurogenesis and angiogenesis plays an important role in nerve tissue development and regeneration. Recently, using bioactive materials to drive neurogenic and angiogenic responses has gained increasing attention. Understanding the neurovascular link between regulatory cues offers valuable insight into the mechanisms underlying nerve regeneration and the design of new bioactive materials. In this study, we utilized a dual-functionalized peptide nanofiber hydrogel presenting the brain-derived neurotrophic factor and vascular endothelial growth factor mimetic peptides RGIDKRHWNSQ (RGI) and KLTWQELYQLKYKGI (KLT) to construct an artificial neurovascular microenvironment. The dual-functionalized peptide nanofiber hydrogel enhanced the neurite outgrowth of pheochromocytoma (PC12) cells and tube-like structures formation of human umbilical vein endothelial cells (HUVECs) in vitro, and promoted rapid lesion infiltration of neural and vascular cells in a rat brain injury model. Using indirect co-culture models, we found that the dual-functionalized peptide hydrogel effectively mediated neurovascular crosstalk by regulating secretion of paracrine factors from PC12 cells and HUVECs. When the two cells types were directly co-cultured on the dual-functionalized peptide hydrogel, the efficiency of cell-cell communication was enhanced, which further accelerated the differentiation and maturation of PC12 cells with an increased number of pseudopodia and spread morphology, and HUVECs tube-like structure formation. In summary, the dual-functionalized peptide nanofiber hydrogel successfully formed an artificial neurovascular niche to directly regulate the behaviors of neural and vascular cells and promote their neurovascular crosstalk through paracrine signaling and direct cell-cell contact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wäelchli, T.; Wacker, A.; Frei, K.; Regli, L.; Schwab, M. E.; Hoerstrup, S. P.; Gerhardt, H.; Engelhardt, B. Wiring the vascular network with neural cues: A CNS perspective. Neuron 2015, 87, 271–296.

    Article  Google Scholar 

  2. Carmeliet, P. Blood vessels and nerves: Common signals, pathways and diseases. Nat. Rev. Genet. 2003, 4, 710–720.

    Article  CAS  Google Scholar 

  3. Muangsanit, P.; Shipley, R. J.; Phillips, J. B. Vascularization strategies for peripheral nerve tissue engineering. Anat. Rec. 2018, 301, 1657–1667.

    Article  Google Scholar 

  4. Paredes, I.; Himmels, P.; de Almodóvar, C. R. Neurovascular communication during CNS development. Dev. Cell 2018, 45, 10–32.

    Article  CAS  Google Scholar 

  5. Katsimpardi, L.; Litterman, N. K.; Schein, P. A.; Miller, C. M.; Loffredo, F. S.; Wojtkiewicz, G. R.; Chen, J. W.; Lee, R. T.; Wagers, A. J.; Rubin, L. L. Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors. Science 2014, 344, 630–634.

    Article  CAS  Google Scholar 

  6. Mahar, M.; Cavalli, V. Intrinsic mechanisms of neuronal axon regeneration. Nat. Rev. Neurosci. 2018, 19, 323–337.

    Article  CAS  Google Scholar 

  7. Nih, L. R.; Gojgini, S.; Carmichael, S. T.; Segura, T. Dual-function injectable angiogenic biomaterial for the repair of brain tissue following stroke. Nat. Mater. 2018, 17, 642–651.

    Article  CAS  Google Scholar 

  8. Kunze, R.; Marti, H. H. Angioneurins-Key regulators of blood-brain barrier integrity during hypoxic and ischemic brain injury. Prog. Neurobiol. 2019, 178, 101611.

    Article  CAS  Google Scholar 

  9. Zacchigna, S.; Lambrechts, D.; Carmeliet, P. Neurovascular signalling defects in neurodegeneration. Nat. Rev. Neurosci. 2008, 9, 169–181.

    Article  CAS  Google Scholar 

  10. Lopatina, T.; Kalinina, N.; Karagyaur, M.; Stambolsky, D.; Rubina, K.; Revischin, A.; Pavlova, G.; Parfyonova, Y.; Tkachuk, V. Adipose-derived stem cells stimulate regeneration of peripheral nerves: BDNF secreted by these cells promotes nerve healing and axon growth de novo. PLoS One 2011, 6, e17899.

    Article  CAS  Google Scholar 

  11. Sun, Y. J.; Jin, K. L.; Xie, L.; Childs, J.; Mao, X. O.; Logvinova, A.; Greenberg, D. A. VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J. Clin. Invest. 2003, 111, 1843–1851.

    Article  CAS  Google Scholar 

  12. Jin, Y.; Kaluza, D.; Jakobsson, L. VEGF, Notch and TGFβ/BMPs in regulation of sprouting angiogenesis and vascular patterning. Biochem. Soc. Trans. 2014, 42, 1576–1583.

    Article  CAS  Google Scholar 

  13. Donovan, M. J.; Lin, M. I.; Wiegn, P.; Ringstedt, T.; Kraemer, R.; Hahn, R.; Wang, S.; Ibanez, C. F.; Rafii, S.; Hempstead, B. L. Brain derived neurotrophic factor is an endothelial cell survival factor required for intramyocardial vessel stabilization. Development 2000, 127, 4531–4540.

    Article  CAS  Google Scholar 

  14. Lange, C.; Storkebaum, E.; de Almodovar, C. R.; Dewerchin, M.; Carmeliet, P. Vascular endothelial growth factor: A neurovascular target in neurological diseases. Nat. Rev. Neurol. 2016, 12, 439–454.

    Article  CAS  Google Scholar 

  15. Hong, T. M.; Chen, Y. L.; Wu, Y. Y.; Yuan, A.; Chao, Y. C.; Chung, Y. C.; Wu, M. H.; Yang, S. C.; Pan, S. H.; Shih, J. Y. et al. Targeting neuropilin 1 as an antitumor strategy in lung cancer. Clin. Cancer Res. 2007, 13, 4759–4768.

    Article  CAS  Google Scholar 

  16. Li, Q.; Ford, M. C.; Lavik, E. B.; Madri, J. A. Modeling the neurovascular niche: VEGF- and BDNF-mediated cross-talk between neural stem cells and endothelial cells: An in vitro study. J. Neurosci. Res. 2006, 84, 1656–1668.

    Article  CAS  Google Scholar 

  17. Lee, J. W.; Lee, K. Y. Dual peptide-presenting hydrogels for controlling the phenotype of PC12 cells. Colloids Surf. B Biointerfaces 2017, 152, 36–41.

    Article  CAS  Google Scholar 

  18. Zhang, Y. P.; Huang, J. W.; Huang, L.; Liu, Q. Q.; Shao, H. L.; Hu, X. C.; Song, L. J. Silk fibroin-based scaffolds with controlled delivery order of VEGF and BDNF for cavernous nerve regeneration. ACS Biomater. Sci. Eng. 2016, 2, 2018–2025.

    Article  CAS  Google Scholar 

  19. Wang, Z. M.; Wang, Z. F.; Lu, W. W.; Zhen, W. X.; Yang, D. Z.; Peng, S. L. Novel biomaterial strategies for controlled growth factor delivery for biomedical applications. NPG Asia Mater. 2017, 9, e435.

    Article  CAS  Google Scholar 

  20. Lu, J. J.; Sun, X.; Yin, H. Y.; Shen, X. Z.; Yang, S. H.; Wang, Y.; Jiang, W. L.; Sun, Y.; Zhao, L. Y.; Sun, X. D. et al. A neurotrophic peptide-functionalized self-assembling peptide nanofiber hydrogel enhances rat sciatic nerve regeneration. Nano Res. 2018, 11, 4599–4613.

    Article  CAS  Google Scholar 

  21. Lu, J. J.; Yan, X. Q.; Sun, X.; Shen, X. Z.; Yin, H. Y.; Wang, C. H.; Liu, Y. F.; Lu, C. F.; Fu, H. T.; Yang, S. H. et al. Synergistic effects of dual-presenting VEGF- and BDNF-mimetic peptide epitopes from self-assembling peptide hydrogels on peripheral nerve regeneration. Nanoscale 2019, 11, 19943–19958.

    Article  CAS  Google Scholar 

  22. Grasman, J. M.; Ferreira, J. A.; Kaplan, D. L. Tissue models for neurogenesis and repair in 3D. Adv. Funct. Mater. 2018, 28, 1803822.

    Article  Google Scholar 

  23. Li, M.; Zhang, A. Q.; Li, J. J.; Zhou, J.; Zheng, Y. N.; Zhang, C.; Xia, D. D.; Mao, H. J.; Zhao, J. Y. Osteoblast/fibroblast coculture derived bioactive ECM with unique matrisome profile facilitates bone regeneration. Bioact. Mater. 2020, 5, 938–948.

    Article  Google Scholar 

  24. Cattin, A. L.; Burden, J. J.; Van Emmenis, L.; Mackenzie, F. E.; Hoving, J. J. A.; Calavia, N. G.; Guo, Y. P.; McLaughlin, M.; Rosenberg, L. H.; Quereda, V. et al. Macrophage-induced blood vessels guide schwann cell-mediated regeneration of peripheral nerves. Cell 2015, 162, 1127–1139.

    Article  CAS  Google Scholar 

  25. Muramatsu, R.; Takahashi, C.; Miyake, S.; Fujimura, H.; Mochizuki, H.; Yamashita, T. Angiogenesis induced by CNS inflammation promotes neuronal remodeling through vessel-derived prostacyclin. Nat. Med. 2012, 18, 1658–1664.

    Article  CAS  Google Scholar 

  26. Ramos, T.; Ahmed, M.; Wieringa, P.; Moroni, L. Schwann cells promote endothelial cell migration. Cell Adh. Migr. 2015, 9, 441–451.

    Article  CAS  Google Scholar 

  27. Grasman, J. M.; Kaplan, D. L. Human endothelial cells secrete neurotropic factors to direct axonal growth of peripheral nerves. Sci. Rep. 2017, 7, 4092.

    Article  Google Scholar 

  28. Wang, C.; Li, J. F.; Sinha, S.; Peterson, A.; Grant, G. A.; Yang, F. Mimicking brain tumor-vasculature microanatomical architecture via co-culture of brain tumor and endothelial cells in 3D hydrogels. Biomaterials 2019, 202, 35–44.

    Article  CAS  Google Scholar 

  29. Arulmoli, J.; Wright, H. J.; Phan, D. T. T.; Sheth, U.; Que, R. A.; Botten, G. A.; Keating, M.; Botvinick, E. L.; Pathak, M. M.; Zarembinski, T. I. et al. Combination scaffolds of salmon fibrin, hyaluronic acid, and laminin for human neural stem cell and vascular tissue engineering. Acta Biomater. 2016, 43, 122–138.

    Article  CAS  Google Scholar 

  30. Kim, J. A.; Lee, N.; Kim, B. H.; Rhee, W. J.; Yoon, S.; Hyeon, T.; Park, T. H. Enhancement of neurite outgrowth in PC12 cells by iron oxide nanoparticles. Biomaterials 2011, 32, 2871–2877.

    Article  CAS  Google Scholar 

  31. Nakatsu, M. N.; Sainson, R. C. A.; Aoto, J. N.; Taylor, K. L.; Aitkenhead, M.; Pérez-del-Pulgar, S.; Carpenter, P. M.; Hughes, C. C. W. Angiogenic sprouting and capillary lumen formation modeled by human umbilical vein endothelial cells (HUVEC) in fibrin gels: The role of fibroblasts and Angiopoietin-1. Microvasc. Res. 2003, 66, 102–112.

    Article  CAS  Google Scholar 

  32. Liu, X.; Wang, X. M.; Horii, A.; Wang, X. J.; Qiao, L.; Zhang, S. G.; Cui, F. Z. In vivo studies on angiogenic activity of two designer self-assembling peptide scaffold hydrogels in the chicken embryo chorioallantoic membrane. Nanoscale 2012, 4, 2720–2727.

    Article  CAS  Google Scholar 

  33. Böhm, G.; Muhr, R.; Jaenicke, R. Quantitative analysis of protein far UV circular dichroism spectra by neural networks. Protein Eng. Des. Sel. 1992, 5, 191–195.

    Article  Google Scholar 

  34. Livak, K. J.; Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the \({2^{ - \Delta \Delta {{\rm{C}}_{\rm{T}}}}}\) method. Methods 2001, 25, 402–408.

    Article  CAS  Google Scholar 

  35. Tang, C. K.; Shao, X. M.; Sun, B. B.; Huang, W. L.; Zhao, X. J. The effect of self-assembling peptide RADA16-I on the growth of human leukemia cells in vitro and in nude mice. Int. J. Mol. Sci. 2009, 10, 2136–2145.

    Article  CAS  Google Scholar 

  36. Kaplan, L.; Chow, B. W.; Gu, C. H. Neuronal regulation of the blood-brain barrier and neurovascular coupling. Nat. Rev. Neurosci. 2020, 21, 416–432.

    Article  CAS  Google Scholar 

  37. Wang, X. M.; Horii, A.; Zhang, S. G. Designer functionalized self-assembling peptide nanofiber scaffolds for growth, migration, and tubulogenesis of human umbilical vein endothelial cells. Soft Matter 2008, 4, 2388–2395.

    Article  CAS  Google Scholar 

  38. Li, X. W.; Zhang, C.; Haggerty, A. E.; Yan, J.; Lan, M.; Seu, M.; Yang, M. Y.; Marlow, M. M.; Maldonado-Lasunción, I.; Cho, B. et al. The effect of a nanofiber-hydrogel composite on neural tissue repair and regeneration in the contused spinal cord. Biomaterials 2020, 245, 119978.

    Article  CAS  Google Scholar 

  39. Segarra, M.; Aburto, M. R.; Hefendehl, J.; Acker-Palmer, A. Neurovascular interactions in the nervous system. Annu. Rev. Cell Dev. Biol. 2019, 6, 615–635.

    Article  Google Scholar 

  40. Potjewyd, G.; Moxon, S.; Wang, T.; Domingos, M.; Hooper, N. M. Tissue engineering 3D neurovascular units: A biomaterials and bioprinting perspective. Trends Biotechnol. 2018, 36, 457–472.

    Article  CAS  Google Scholar 

  41. dos Santos, B. P.; Garbay, B.; Fenelon, M.; Rosselin, M.; Garanger, E.; Lecommandoux, S.; Oliveira, H.; Amédée, J. Development of a cell-free and growth factor-free hydrogel capable of inducing angiogenesis and innervation after subcutaneous implantation. Acta Biomater. 2019, 99, 154–167.

    Article  CAS  Google Scholar 

  42. Guan, J.; Tong, W. M.; Ding, W. Y.; Du, S. W.; Xiao, Z. F.; Han, Q. Q.; Zhu, Z. H.; Bao, X. J.; Shi, X. M. et al. Neuronal regeneration and protection by collagen-binding BDNF in the rat middle cerebral artery occlusion model. Biomaterials 2012, 33, 1386–1395.

    Article  CAS  Google Scholar 

  43. Wang, T. W.; Chang, K. C.; Chen, L. H.; Liao, S. Y.; Yeh, C. W.; Chuang, Y. J. Effects of an injectable functionalized self-assembling nanopeptide hydrogel on angiogenesis and neurogenesis for regeneration of the central nervous system. Nanoscale 2017, 9, 16281–16292.

    Article  CAS  Google Scholar 

  44. Lu, C. F.; Wang, Y.; Yang, S. H.; Wang, C.; Sun, X.; Lu, J. J.; Yin, H. Y.; Jiang, W. L.; Meng, H. Y. et al. Bioactive self-assembling peptide hydrogels functionalized with brain-derived neurotrophic factor and nerve growth factor mimicking peptides synergistically promote peripheral nerve regeneration. ACS Biomater. Sci. Eng. 2018, 4, 2994–3005.

    Article  CAS  Google Scholar 

  45. Liu, G. H.; Wu, R. P.; Yang, B.; Shi, Y. A.; Deng, C. H.; Atala, A.; Mou, S.; Criswell, T.; Zhang, Y. Y. A cocktail of growth factors released from a heparin hyaluronic-acid hydrogel promotes the myogenic potential of human urine-derived stem cells in vivo. Acta Biomater. 2020, 107, 50–64.

    Article  CAS  Google Scholar 

  46. Yao, S.; Yu, S.; Cao, Z.; Yang, Y.; Yu, X.; Mao, H. Q.; Wang, L. N.; Sun, X.; Zhao, L.; Wang, X. M. Hierarchically aligned fibrin nanofiber hydrogel accelerated axonal regrowth and locomotor function recovery in rat spinal cord injury. Int. J. Nanomedicine 2018, 13, 2883–2895.

    Article  CAS  Google Scholar 

  47. Yang, S. H.; Wang, C.; Zhu, J. J.; Lu, C. F.; Li, H. T.; Chen, F. Y.; Lu, J. J.; Zhang, Z.; Yan, X. Q.; Zhao, H. et al. Self-assembling peptide hydrogels functionalized with LN- and BDNF- mimicking epitopes synergistically enhance peripheral nerve regeneration. Theranostics 2020, 10, 8227–8249.

    Article  CAS  Google Scholar 

  48. Alarcon-Martinez, L.; Villafranca-Baughman, D.; Quintero, H.; Kacerovsky, J. B.; Dotigny, F.; Murai, K. K.; Prat, A.; Drapeau, P.; Di Polo, A. Interpericyte tunnelling nanotubes regulate neurovascular coupling. Nature 2020, 585, 91–95.

    Article  CAS  Google Scholar 

  49. Wang, H. K.; Zhu, H.; Guo, Q.; Qian, T. M.; Zhang, P.; Li, S. Y.; Xue, C. B.; Gu, X. S. Overlapping mechanisms of peripheral nerve regeneration and angiogenesis following sciatic nerve transection. Front. Cell. Neurosci. 2017, 11, 323.

    Article  Google Scholar 

  50. Geuna, S.; Raimondo, S.; Fregnan, F.; Haastert-Talini, K.; Grothe, C. In vitro models for peripheral nerve regeneration. Eur. J. Neurosci. 2016, 43, 287–296.

    Article  CAS  Google Scholar 

  51. Qiu, L. H.; He, B.; Hu, J.; Zhu, Z. W.; Liu, X. L.; Zhu, J. K. Cartilage oligomeric matrix protein angiopoeitin-1 provides benefits during nerve regeneration in vivo and in vitro. Ann. Biomed. Eng. 2015, 43, 2924–2940.

    Article  Google Scholar 

  52. Wei, D.; Sun, J.; Yang, Y.; Wu, C. H.; Chen, S. P.; Guo, Z. Z.; Fan, H. S.; Zhang, X. D. Cell alignment guided by nano/micro oriented collagen fibers and the synergistic vascularization for nervous cell functional expression. Mater. Today Chem. 2018, 8, 85–95.

    Article  CAS  Google Scholar 

  53. Yang, K.; Lee, J. S.; Han, S.; Jin, Y.; Cho, A. N.; Chang, G. E.; Cheong, E.; Yang, J. H.; Chung, S.; Cho, S. W. Endothelial-neurosphere crosstalk in microwell arrays regulates self-renewal and differentiation of human neural stem cells. J. Ind. Eng. Chem. 2019, 74, 148–157.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from the National Key R&D Program of China (Nos. 2020YFC1107600 and 2018YFB0704304), the National Natural Science Foundation of China (Nos. 31771056 and 31771052), and Shandong Province Key R&D Program of China (No. 2019JZZY011106).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiaju Lu or Xiumei Wang.

Electronic supplementary material

12274_2021_3684_MOESM1_ESM.pdf

Crosstalk between PC12 cells and endothelial cells in an artificial neurovascular niche constructed by a dual-functionalized self-assembling peptide nanofiber hydrogel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Chai, Y., Zhao, H. et al. Crosstalk between PC12 cells and endothelial cells in an artificial neurovascular niche constructed by a dual-functionalized self-assembling peptide nanofiber hydrogel. Nano Res. 15, 1433–1445 (2022). https://doi.org/10.1007/s12274-021-3684-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3684-5

Keywords

Navigation