Skip to main content
Log in

Amorphous alloys for electrocatalysis: The significant role of the amorphous alloy structure

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Amorphous alloys, also known as metallic glasses, are solid metallic materials having long-range disordered atomic structures. Compared to crystalline alloys, amorphous alloys not only have metallic characters, but also possess several distinct properties associated to the amorphous structure, such as isotropy, composition flexibility, unsaturated surface, etc. As a result, amorphous alloys offer a class of highly promising materials for catalyzing electrochemical reactions. In this minireview, the preparation, characterization and electrocatalytic performances of a variety of metallic amorphous alloy materials are summarized. The influences of the amorphous alloy structure on different electrochemical reactions are discussed. Finally, a summary on the advantages and challenges of amorphous alloys in electrocatalysis is provided, along with some perspectives about the future research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dyre, J. C. Colloquium: The glass transition and elastic models of glass-forming liquids. Rev. Mod. Phys. 2006, 78, 953–972.

    CAS  Google Scholar 

  2. Jun W. K.; Willens, R. H.; Duwez, P. Non-crystalline structure in solidified gold-silicon alloys. Nature 1960, 187, 869–870.

    Google Scholar 

  3. Greer, A. L. Metallic glasses. Science 1995, 267, 1947–1953.

    CAS  Google Scholar 

  4. Wang, W. H. The elastic properties, elastic models and elastic perspectives of metallic glasses. Prog. Mater Sci. 2012, 57, 487–656.

    CAS  Google Scholar 

  5. Kumar, G.; Desai, A.; Schroers, J. Bulk metallic glass: The smaller the better. Adv. Mater. 2011, 23, 461–476.

    CAS  Google Scholar 

  6. Jiang, J. H.; Zhai, R. S.; Bao, X. H. Electrocatalytic properties of Cu-Zr amorphous alloy towards the electrochemical hydrogenation of nitrobenzene. J. Alloys Compd. 2003, 354, 248–258.

    CAS  Google Scholar 

  7. Brookes, H. C.; Carruthers, C. M.; Doyle, T. B. The electrochemical and electrocatalytic behaviour of glassy metals. J. Appl. Electrochem. 2005, 35, 903–913.

    CAS  Google Scholar 

  8. Sekol, R. C.; Carmo, M.; Kumar, G.; Gittleson, F.; Doubek, G.; Sun, K.; Schroers, J.; Taylor, A. D. Pd-Ni-Cu-P metallic glass nanowires for methanol and ethanol oxidation in alkaline media. Int. J. Hydrogen Energy 2013, 38, 11248–11255.

    CAS  Google Scholar 

  9. Kreysa, G.; Håkansson, B. Electrocatalysis by amorphous metals of hydrogen and oxygen evolution in alkaline solution. J. Electroanal. Chem. Interfacial Electrochem. 1986, 201, 61–83.

    CAS  Google Scholar 

  10. Thomas, J. M.; Thomas, W. J. Principles and Practice of Heterogeneous Catalysis, 2nd ed.; John Wiley & Sons: New York, 2015.

    Google Scholar 

  11. Wu, G.; Zheng, X. S.; Cui, P. X.; Jiang, H. Y.; Wang, X. Q.; Qu, Y. T.; Chen, W. X.; Lin, Y.; Li, H.; Han, X. et al. A general synthesis approach for amorphous noble metal nanosheets. Nat. Commun. 2019, 10, 4855.

    Google Scholar 

  12. Anantharaj, S.; Noda, S. Amorphous catalysts and electrochemical water splitting: An untold story of harmony. Small 2020, 16, 1905779.

    CAS  Google Scholar 

  13. Li, F. C.; Liu, T.; Zhang, J. Y.; Shuang, S.; Wang, Q.; Wang, A. D.; Wang, J. G.; Yang, Y. Amorphous-nanocrystalline alloys: Fabrication, properties, and applications. Mater. Today Adv. 2019, 4, 100027.

    Google Scholar 

  14. Li, J. Y.; Doubek, G.; McMillon-Brown, L.; Taylor, A. D. Recent advances in metallic glass nanostructures: Synthesis strategies and electrocatalytic applications. Adv. Mater. 2019, 31, 1802120.

    Google Scholar 

  15. Zhang, L. C.; Jia, Z.; Lyu, F. C.; Liang, S. X.; Lu, J. A review of catalytic performance of metallic glasses in wastewater treatment: Recent progress and prospects. Prog. Mater. Sci. 2019, 105, 100576.

    CAS  Google Scholar 

  16. Pei, Y.; Zhou, G. B.; Luan, N.; Zong, B. N.; Qiao, M. H.; Tao, F. Synthesis and catalysis of chemically reduced metal-metalloid amorphous alloys. Chem. Soc. Rev. 2012, 41, 8140–8162.

    CAS  Google Scholar 

  17. Heimendahl, L. V. Metallic glasses as relaxed Bernal structures. J. Phys. F: Met. Phys. 1975, 5, L141.

    Google Scholar 

  18. Sheng, H. W.; Luo, W. K.; Alamgir, F. M.; Bai, J. M.; Ma, E. Atomic packing and short-to-medium-range order in metallic glasses. Nature 2006, 439, 419–425.

    CAS  Google Scholar 

  19. Deng, J. F.; Li, H. X.; Wang, W. J. Progress in design of new amorphous alloy catalysts. Catal. Today 1999, 51, 113–125.

    CAS  Google Scholar 

  20. Ou, S. L.; Ma, D. G.; Li, Y. H.; Yubuta, K.; Tan, Z. Q.; Wang, Y. M.; Zhang, W. Fabrication and electrocatalytic properties of ferromagnetic nanoporous PtFe by dealloying an amorphous Fe60Pt10B30 alloy. J. Alloys Compd. 2017, 706, 215–219.

    CAS  Google Scholar 

  21. Guo, S.; Liu, C. T. Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase. Prog. Nat. Sci.: Mater. Int. 2011, 21, 433–446.

    Google Scholar 

  22. Liu, X. Y.; Xiang, Z.; Niu, J. C.; Xia, K. D.; Yang, Y.; Yan, B.; Lu, W. The corrosion behaviors of amorphous, nanocrystalline and crystalline Ni-W alloys coating. Int. J. Electrochem. Sci. 2015, 10, 9042–9048.

    CAS  Google Scholar 

  23. Gebert, A.; Wolff, U.; John, A.; Eckert, J.; Schultz, L. Stability of the bulk glass-forming Mg65Y10Cu25 alloy in aqueous electrolytes. Mater. Sci. Eng.: A 2001, 299, 125–135.

    Google Scholar 

  24. Fabbri, E.; Nachtegaal, M.; Binninger, T.; Cheng, X.; Kim, B. J.; Durst, J.; Bozza, F.; Graule, T.; Schäublin, R.; Wiles, L. et al. Dynamic surface self-reconstruction is the key of highly active perovskite nano-electrocatalysts for water splitting. Nat. Mater. 2017, 16, 925–931.

    CAS  Google Scholar 

  25. Inoue, A.; Zhang, T.; Masumoto, T. Zr-Al-Ni amorphous alloys with high glass transition temperature and significant supercooled liquid region. Mater. Trans., JIM 1990, 31, 177–183.

    CAS  Google Scholar 

  26. Zhang, L. Y.; Ouyang, Y. R.; Wang, S.; Wu, D. B.; Jiang, M. C.; Wang, F. Q.; Yuan, W. Y.; Li, C. M. Perforated Pd nanosheets with crystalline/amorphous heterostructures as a highly active robust catalyst toward formic acid oxidation. Small 2019, 15, 1904245.

    CAS  Google Scholar 

  27. Zhang, F. B.; Wu, J. L.; Jiang, W.; Hu, Q. Z.; Zhang, B. New and efficient electrocatalyst for hydrogen production from water splitting: Inexpensive, robust metallic glassy ribbons based on iron and cobalt. ACS Appl. Mater. Interfaces 2017, 9, 31340–31344.

    CAS  Google Scholar 

  28. Tang, W. K.; Liu, X. F.; Li, Y.; Pu, Y. H.; Lu, Y.; Song, Z. M.; Wang, Q.; Yu, R. H.; Shui, J. L. Boosting electrocatalytic water splitting via metal-metalloid combined modulation in quaternary Ni-Fe-P-B amorphous compound. Nano Res. 2020, 13, 447–454.

    CAS  Google Scholar 

  29. Zhu, Y.; Liu, F. P.; Ding, W. P.; Guo, X. F.; Chen, Y. Noncrystalline metal-boron nanotubes: Synthesis, characterization, and catalytic-hydrogenation properties. Angew. Chem. 2006, 118, 7369–7372.

    Google Scholar 

  30. Li, T. T.; Li, S.; Zuo, Y. P.; Zhu, G. L.; Han, H. Y. Amorphous nickel boride membrane coated PdCuCo dendrites as high-efficiency catalyst for oxygen reduction and methanol oxidation reaction. Mater. Today Energy 2019, 12, 179–185.

    Google Scholar 

  31. Nsanzimana, J. M. V.; Peng, Y. C.; Xu, Y. Y.; Thia, L.; Wang, C.; Xia, B. Y.; Wang, X. An efficient and earth-abundant oxygen-evolving electrocatalyst based on amorphous metal borides. Adv. Energy Mater. 2018, 8, 1701475.

    Google Scholar 

  32. Kang, Y. Q.; Henzie, J.; Gu, H. J.; Na, J.; Fatehmulla, A.; Shamsan, B. S. A.; Aldhafiri, A. M.; Farooq, W. A.; Bando, Y.; Asahi, T. et al. Mesoporous metal-metalloid amorphous alloys: The first synthesis of open 3D mesoporous Ni-B amorphous alloy spheres via a dual chemical reduction method. Small 2020, 16, 1906707.

    CAS  Google Scholar 

  33. Li, H.; Liu, J.; Xie, S. H.; Qiao, M. H.; Dai, W. L.; Li, H. X. Highly active Co-B amorphous alloy catalyst with uniform nanoparticles prepared in oil-in-water microemulsion. J. Catal. 2008, 259, 104–110.

    CAS  Google Scholar 

  34. Yan, Z. J.; Xue, D. S. Synthesis of ultrafine amorphous Fe-B alloy nanoparticles using anodic aluminum oxide templates. J. Mater. Sci. 2008, 43, 771–774.

    CAS  Google Scholar 

  35. Wei, W.; Zhao, Y.; Peng, S. C.; Zhang, H. Y.; Bian, Y. P.; Li, H. X.; Li, H. Hollow Ni-Co-B amorphous alloy nanospheres: Facile fabrication via vesicle-assisted chemical reduction and their enhanced catalytic performances. J. Mater. Chem. A 2014, 2, 19253–19259.

    CAS  Google Scholar 

  36. Li, H.; Xu, Y.; Liu, J.; Zhao, Q. F.; Li, H. X. Hollow Ni-B amorphous alloy with enhanced catalytic efficiency prepared in emulsion system. J. Colloid Interface Sci. 2009, 334, 176–182.

    CAS  Google Scholar 

  37. Tong, D. G.; Han, X.; Chu, W.; Chen, H.; Ji, X. Y. Preparation of mesoporous Co-B catalyst via self-assembled triblock copolymer templates. Mater. Lett. 2007, 61, 4679–4682.

    CAS  Google Scholar 

  38. Jiang, B.; Song, H.; Kang, Y. Q.; Wang, S. Y.; Wang, Q.; Zhou, X.; Kani, K.; Guo, Y. N.; Ye, J. H.; Li, H. X. et al. A mesoporous non-precious metal boride system: Synthesis of mesoporous cobalt boride by strictly controlled chemical reduction. Chem. Sci. 2020, 11, 791–796.

    CAS  Google Scholar 

  39. Wang, K. H.; Sun, K. L.; Yu, T. P.; Liu, X.; Wang, G. X.; Jiang, L. H.; Xie, G. W. Facile synthesis of nanoporous Ni-Fe-P bifunctional catalysts with high performance for overall water splitting. J. Mater. Chem. A 2019, 7, 2518–2523.

    CAS  Google Scholar 

  40. Chang, B.; Hao, S.; Ye, Z. X.; Yang, Y. C. A self-supported amorphous Ni-P alloy on a CuO nanowire array: An efficient 3D electrode catalyst for water splitting in alkaline media. Chem. Commun. 2018, 54, 2393–2396.

    CAS  Google Scholar 

  41. Wang, T. Y.; Wang, C.; Jin, Y.; Sviripa, A.; Liang, J. S.; Han, J. T.; Huang, Y. H.; Li, Q.; Wu, G. Amorphous Co-Fe-P nanospheres for efficient water oxidation. J. Mater. Chem. A 2017, 5, 25378–25384.

    CAS  Google Scholar 

  42. Huang, Z. Z.; Zhang, T. F.; Liu, J. K.; Zhang, L. H.; Jin, Y. H.; Wang, J. P.; Jiang, K. L.; Fan, S. S.; Li, Q. Q. Amorphous MoS2 photodetector with ultra-broadband response. ACS Appl. Electron. Mater. 2019, 1, 1314–1321.

    CAS  Google Scholar 

  43. Ramya, M.; Karthika, M.; Selvakumar, R.; Raj, B.; Ravi, K. R. A facile and efficient single step ball milling process for synthesis of partially amorphous Mg-Zn-Ca alloy powders for dye degradation. J. Alloys Compd. 2017, 696, 185–192.

    CAS  Google Scholar 

  44. Kumar, G.; Tang, H. X.; Schroers, J. Nanomoulding with amorphous metals. Nature 2009, 457, 868–872.

    CAS  Google Scholar 

  45. Carmo, M.; Sekol, R. C.; Ding, S. Y.; Kumar, G.; Schroers, J.; Taylor, A. D. Bulk metallic glass nanowire architecture for electrochemical applications. ACS Nano 2011, 5, 2979–2983.

    CAS  Google Scholar 

  46. Wen, M.; Liu, H. Q.; Zhang, F.; Zhu, Y. Z.; Liu, D.; Tian, Y.; Wu, Q. S. Amorphous FeNiPt nanoparticles with tunable length for electrocatalysis and electrochemical determination of thiols. Chem. Commun. 2009, 4530–4532.

    Google Scholar 

  47. Wang, W. C.; He, T. O.; Yang, X. L.; Liu, Y. M.; Wang, C. Q.; Li, J.; Xiao, A. D.; Zhang, K.; Shi, X. T.; Jin, M. S. General synthesis of amorphous PdM (M = Cu, Fe, Co, Ni) alloy nanowires for boosting HCOOH dehydrogenation. Nano Lett. 2021, 21, 3458–3464.

    CAS  Google Scholar 

  48. Cheng, H. F.; Yang, N. L.; Liu, G. G.; Ge, Y. Y.; Huang, J. T.; Yun, Q. B.; Du, Y. H.; Sun, C. J.; Chen, B.; Liu, J. W. et al. Ligand-exchange-induced amorphization of Pd nanomaterials for highly efficient electrocatalytic hydrogen evolution reaction. Adv. Mater. 2020, 32, 1902964.

    CAS  Google Scholar 

  49. Zhao, Y. G.; Liu, J. J.; Liu, C. G.; Wang, F.; Song, Y. Amorphous CuPt alloy nanotubes induced by Na2S2O3 as efficient catalysts for the methanol oxidation reaction. ACS Catal. 2016, 6, 4127–4134.

    CAS  Google Scholar 

  50. Peng, X.; Qasim, A. M.; Jin, W. H.; Wang, L. S.; Hu, L. S.; Miao, Y. P.; Li, W.; Li, Y.; Liu, Z. T.; Huo, K. F. et al. Ni-doped amorphous iron phosphide nanoparticles on TiN nanowire arrays: An advanced alkaline hydrogen evolution electrocatalyst. Nano Energy 2018, 53, 66–73.

    CAS  Google Scholar 

  51. Qiao, A.; Tao, H. Z.; Yue, Y. Z. Enhancing ionic conductivity in Ag3PS4 via mechanical amorphization. J. Non-Cryst. Solids 2019, 521, 119476.

    CAS  Google Scholar 

  52. Uner, N. B.; Thimsen, E. Low temperature plasma as a means to transform nanoparticle atomic structure. Plasma Sources Sci. Technol. 2018, 27, 074005.

    Google Scholar 

  53. Zhang, X.; Luo, Z. M.; Yu, P.; Cai, Y. Q.; Du, Y. H.; Wu, D. X.; Gao, S.; Tan, C. L.; Li, Z.; Ren, M. Q. et al. Lithiation-induced amorphization of Pd3P2S8 for highly efficient hydrogen evolution. Nat. Catal. 2018, 1, 460–468.

    CAS  Google Scholar 

  54. Hu, Y. C.; Wang, Y. Z.; Su, R.; Cao, C. R.; Li, F.; Sun, C. W.; Yang, Y.; Guan, P. F.; Ding, D. W.; Wang, Z. L. et al. A highly efficient and self-stabilizing metallic-glass catalyst for electrochemical hydrogen generation. Adv. Mater. 2016, 28, 10293–10297.

    CAS  Google Scholar 

  55. Wang, J.; Han, L. L.; Huang, B. L.; Shao, Q.; Xin, H. L.; Huang, X. Q. Amorphization activated ruthenium-tellurium nanorods for efficient water splitting. Nat. Commun. 2019, 10, 5692.

    CAS  Google Scholar 

  56. Ghobrial, S.; Kirk, D. W.; Thorpe, S. J. Amorphous Ni-Nb-Y alloys as hydrogen evolution electrocatalysts. Electrocatalysis 2019, 10, 243–252.

    CAS  Google Scholar 

  57. Thenuwara, A. C.; Dheer, L.; Attanayake, N. H.; Yan, Q. M.; Waghmare, U. V.; Strongin, D. R. Co-Mo-P based electrocatalyst for superior reactivity in the alkaline hydrogen evolution reaction. ChemCatChem 2018, 10, 4832–4837.

    Google Scholar 

  58. Zhu, Y. A.; Pan, Y.; Dai, W. J.; Lu, T. Dealloying generation of oxygen vacancies in the amorphous nanoporous Ni-Mo-O for superior electrocatalytic hydrogen generation. ACS Appl. Energy Mater. 2020, 3, 1319–1327.

    CAS  Google Scholar 

  59. McEnaney, J. M.; Crompton, J. C.; Callejas, J. F.; Popczun, E. J.; Read, C. G.; Lewis, N. S.; Schaak, R. E. Electrocatalytic hydrogen evolution using amorphous tungsten phosphide nanoparticles. Chem. Commun. 2011, 50, 11026–11028.

    Google Scholar 

  60. Xu, W. C.; Zhu, S. L.; Liang, Y. Q.; Cui, Z. D.; Yang, X. J.; Inoue, A. A nanoporous metal phosphide catalyst for bifunctional water splitting. J. Mater. Chem. A 2018, 6, 5574–5579.

    CAS  Google Scholar 

  61. Cao, D.; Wang, J. Y.; Xu, H. X.; Cheng, D. J. Growth of highly active amorphous RuCu nanosheets on Cu nanotubes for the hydrogen evolution reaction in wide pH values. Small 2020, 16, 2000924.

    CAS  Google Scholar 

  62. Zeng, M.; Wang, H.; Zhao, C.; Wei, J. K.; Qi, K.; Wang, W. L.; Bai, X. D. Nanostructured amorphous nickel boride for high-efficiency electrocatalytic hydrogen evolution over a broad pH range. ChemCatChem 2016, 8, 708–712.

    CAS  Google Scholar 

  63. Tan, Y. W.; Zhu, F.; Wang, H.; Tian, Y.; Hirata, A.; Fujita, T.; Chen, M. W. Noble-metal-free metallic glass as a highly active and stable bifunctional electrocatalyst for water splitting. Adv. Mater. Interfaces 2017, 4, 1601086.

    Google Scholar 

  64. Huang, H. W.; Cho, A.; Kim, S.; Jun, H.; Lee, A.; Han, J. W.; Lee, J. Structural design of amorphous CoMoPx with abundant active sites and synergistic catalysis effect for effective water splitting. Adv. Funct. Mater. 2020, 30, 2003889.

    CAS  Google Scholar 

  65. Hu, F.; Zhu, S. L.; Chen, S. M.; Li, Y.; Ma, L.; Wu, T. P.; Zhang, Y.; Wang, C. M.; Liu, C. C.; Yang, X. J. et al. Amorphous metallic NiFeP: A conductive bulk material achieving high activity for oxygen evolution reaction in both alkaline and acidic media. Adv. Mater. 2017, 29, 1606570.

    Google Scholar 

  66. Cai, W. Z.; Yang, H. B.; Zhang, J. M.; Chen, H. C.; Tao, H. B.; Gao, J. J.; Liu, S.; Liu, W.; Li, X. N.; Liu, B. Amorphous multimetal alloy oxygen evolving catalysts. ACS Materials Lett. 2020, 2, 624–632.

    CAS  Google Scholar 

  67. Yang, Y. S.; Zhuang, L. Z.; Rufford, T. E.; Wang, S. B.; Zhu, Z. H. Efficient water oxidation with amorphous transition metal boride catalysts synthesized by chemical reduction of metal nitrate salts at room temperature. RSC Adv. 2017, 7, 32923–32930.

    CAS  Google Scholar 

  68. Glasscott, M. W.; Pendergast, A. D.; Goines, S.; Bishop, A. R.; Hoang, A. T.; Renault, C.; Dick, J. E. Electrosynthesis of high-entropy metallic glass nanoparticles for designer, multi-functional electrocatalysis. Nat. Commun. 2019, 10, 2650.

    Google Scholar 

  69. Li, L. J.; Huang, W. J.; Lei, J. L.; Shang, B.; Li, N. B.; Pan, F. S. Holey nanospheres of amorphous bimetallic phosphide electrodeposited on 3D porous Ni foam for efficient oxygen evolution. Appl. Surf. Sci. 2019, 479, 540–547.

    CAS  Google Scholar 

  70. Zhu, W. J.; Zhu, G. X.; Yao, C. L.; Chen, H.; Hu, J.; Zhu, Y.; Liang, W. F. Porous amorphous FeCo alloys as pre-catalysts for promoting the oxygen evolution reaction. J. Alloys Compd. 2020, 828, 154465.

    CAS  Google Scholar 

  71. Wei, X. Q.; Luo, X.; Xu, Z. K.; Wu, Y.; Wang, H. J.; Gu, W. L.; Zhu, C. Z. Three-dimensional amorphous NiCoFe nanowire@nanosheets catalysts for enhanced oxygen evolution reaction. J. Electrochem. Soc. 2020, 167, 064514.

    CAS  Google Scholar 

  72. Wang, S.; He, P.; Xie, Z. W.; Jia, L. P.; He, M. Q.; Zhang, X. Q.; Dong, F. Q.; Liu, H. H.; Zhang, Y.; Li, C. X. Tunable nanocotton-like amorphous ternary Ni-Co-B: A highly efficient catalyst for enhanced oxygen evolution reaction. Electrochim. Acta 2019, 296, 644–652.

    CAS  Google Scholar 

  73. Poon, K. C.; Tan, D. C. L.; Vo, T. D. T.; Khezri, B.; Su, H. B.; Webster, R. D.; Sato, H. Newly developed stepwise electroless deposition enables a remarkably facile synthesis of highly active and stable amorphous Pd nanoparticle electrocatalysts for oxygen reduction reaction. J. Am. Chem. Soc. 2014, 136, 5217–5220.

    CAS  Google Scholar 

  74. Wu, X. Q.; Chen, F. Y.; Zhang, N.; Qaseem, A.; Johnston, R. L. A silver-copper metallic glass electrocatalyst with high activity and stability comparable to Pt/C for zinc-air batteries. J. Mater. Chem. A 2016, 4, 3527–3537.

    CAS  Google Scholar 

  75. Ma, Y. J.; Li, H.; Wang, H.; Ji, S.; Linkov, V.; Wang, R. F. Ultrafine amorphous PtNiP nanoparticles supported on carbon as efficiency electrocatalyst for oxygen reduction reaction. J. Power Sources 2014, 259, 87–91.

    CAS  Google Scholar 

  76. Liu, L. Y.; Zhao, X.; Li, R. W.; Su, H.; Zhang, H.; Liu, Q. H. Subnano amorphous Fe-based clusters with high mass activity for efficient electrocatalytic oxygen reduction reaction. ACS Appl. Mater. Interfaces 2019, 11, 41432–41439.

    CAS  Google Scholar 

  77. Xu, L.; Tian, Y. H.; Deng, D. J.; Li, H. P.; Zhang, D.; Qian, J. C.; Wang, S.; Zhang, J. M.; Li, H. N.; Sun, S. H. Cu nanoclusters/FeN4 amorphous composites with dual active sites in N-doped graphene for high-performance Zn-air batteries. ACS Appl. Mater. Interfaces 2020, 12, 31340–31350.

    CAS  Google Scholar 

  78. Duan, Y. X.; Meng, F. L.; Liu, K. H.; Yi, S. S.; Li, S. J.; Yan, J. M.; Jiang, Q. Amorphizing of Cu nanoparticles toward highly efficient and robust electrocatalyst for CO2 reduction to liquid fuels with high faradaic efficiencies. Adv. Mater. 2018, 30, 1706194.

    Google Scholar 

  79. Zhang, J. B.; Yin, R. G.; Shao, Q.; Zhu, T.; Huang, X. Q. Oxygen vacancies in amorphous InOx nanoribbons enhance CO2 adsorption and activation for CO2 elecrooeeduction. Angew. Chem., Int. Ed. 2019, 58, 5609–5613.

    CAS  Google Scholar 

  80. Wu, Y. Z.; Zhai, P. L.; Cao, S. Y.; Li, Z. W.; Zhang, B.; Zhang, Y. T.; Nie, X. W.; Sun, L. C.; Hou, J. G. CO2 reduction: Beyond d orbits: Steering the selectivity of electrochemical CO2 reduction via hybridized sp band of sulfur-incorporated porous Cd architectures with dual collaborative sites (Adv. Energy Mater. 45/2020). Adv. Energy Mater. 2020, 10, 2070183.

    CAS  Google Scholar 

  81. Zhou, J. H.; Yuan, K.; Zhou, L.; Guo, Y.; Luo, M. Y.; Guo, X. Y.; Meng, Q. Y.; Zhang, Y. W. Boosting electrochemical reduction of CO2 at a low overpotential by amorphous Ag-Bi-S-O decorated Bi0 nanocrystals. Angew. Chem., Int. Ed. 2019, 58, 14197–14201.

    CAS  Google Scholar 

  82. Li, S. J.; Bao, D.; Shi, M. M.; Wulan, B. R.; Yan, J. M.; Jiang, Q. Amorphizing of au nanoparticles by CeOx-RGO hybrid support towards highly efficient electrocatalyst for N2 reduction under ambient conditions. Adv. Mater. 2017, 29, 1700001.

    Google Scholar 

  83. Shi, M. M.; Bao, D.; Li, S. J.; Wulan, B. R.; Yan, J. M.; Jiang, Q. Anchoring PdCu amorphous nanocluster on graphene for electrochemical reduction of N2 to NH3 under ambient conditions in aqueous solution. Adv. Energy Mater. 2018, 8, 1800124.

    Google Scholar 

  84. Li, P. X.; Fu, W. Z.; Zhuang, P. Y.; Cao, Y. D.; Tang, C.; Watson, A. B.; Dong, P.; Shen, J. F.; Ye, M. X. Amorphous Sn/crystalline SnS2 nanosheets via in situ electrochemical reduction methodology for highly efficient ambient N2 fixation. Small 2019, 15, 1902535.

    Google Scholar 

  85. Wang, J.; Huang, B. L.; Ji, Y. J.; Sun, M. Z.; Wu, T.; Yin, R. G.; Zhu, X.; Li, Y. Y.; Shao, Q.; Huang, X. Q. A general strategy to glassy M-Te (M = Ru, Rh, Ir) porous nanorods for efficient electrochemical N2 fixation. Adv. Mater. 2020, 32, 1907112.

    CAS  Google Scholar 

  86. Fang, Z. W.; Wu, P.; Qian, Y. M.; Yu, G. H. Gel-derived amorphous bismuth-nickel alloy promotes electrocatalytic nitrogen fixation via optimizing nitrogen adsorption and activation. Angew. Chem., Int. Ed. 2021, 60, 4275–4281.

    CAS  Google Scholar 

  87. Wang, H.; Zhang, X. T.; Wang, R. F.; Ji, S.; Wang, W.; Wang, Q. Z.; Lei, Z. G. Amorphous CoSn alloys decorated by Pt as high efficiency electrocatalysts for ethanol oxidation. J. Power Sources 2011, 196, 8000–8003.

    CAS  Google Scholar 

  88. Yin, P. F.; Zhou, M.; Chen, J. Z.; Tan, C. L.; Liu, G. G.; Ma, Q. L.; Yun, Q. B.; Zhang, X.; Cheng, H. F.; Lu, Q. P. et al. Synthesis of palladium-based crystalline@amorphous core-shell nanoplates for highly efficient ethanol oxidation. Adv. Mater. 2020, 32, 2000482.

    CAS  Google Scholar 

  89. Lv, F.; Zhang, W. Y.; Sun, M. Z.; Lin, F. X.; Wu, T.; Zhou, P.; Yang, W. X.; Gao, P.; Huang, B. L.; Guo, S. J. Au clusters on Pd nanosheets selectively switch the pathway of ethanol electrooxidation: Amorphous/crystalline interface matters. Adv. Energy Mater. 2021, 11, 2100187.

    CAS  Google Scholar 

  90. Tao, H. B.; Xu, Y. H.; Huang, X.; Chen, J. Z.; Pei, L. J.; Zhang, J. M.; Chen, J. G.; Liu, B. A general method to probe oxygen evolution intermediates at operating conditions. Joule 2019, 3, 1498–1509.

    CAS  Google Scholar 

  91. Tao, H. B.; Zhang, J. M.; Chen, J. Z.; Zhang, L. P.; Xu, Y. H.; Chen, J. G.; Liu, B. Revealing energetics of surface oxygen redox from kinetic fingerprint in oxygen electrocatalysis. J. Am. Chem. Soc. 2019, 141, 13803–13811.

    CAS  Google Scholar 

  92. Zhang, J. M.; Tao, H. B.; Kuang, M.; Yang, H. B.; Cai, W. Z.; Yan, Q. Y.; Mao, Q.; Liu, B. Advances in thermodynamic-kinetic model for analyzing the oxygen evolution reaction. ACS Catal. 2020, 10, 8597–8610.

    CAS  Google Scholar 

  93. Liu, M. L.; Zhao, Z. P.; Duan, X. F.; Huang, Y. Nanoscale structure design for high-performance Pt-based ORR catalysts. Adv. Mater. 2019, 31, 1802234.

    Google Scholar 

  94. Niemantsverdriet, J. W. Spectroscopy in Catalysis: An Introduction, 3rd ed.; John Wiley & Sons: Weinheim, 2007.

    Google Scholar 

  95. Li, L. Q.; Tang, C.; Xia, B. Q.; Jin, H. Y.; Zheng, Y.; Qiao, S. Z. Two-dimensional mosaic bismuth nanosheets for highly selective ambient electrocatalytic nitrogen reduction. ACS Catal. 2019, 9, 2902–2908.

    CAS  Google Scholar 

  96. Liang, Y. X.; Sun, Y. J.; Wang, X. Y.; Fu, E. G.; Zhang, J.; Du, J. L.; Wen, X. D.; Guo, S. J. High electrocatalytic performance inspired by crystalline/amorphous interface in PtPb nanoplate. Nanoscale 2018, 10, 11357–11364.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Education of Singapore under Tier 1 RG115/18 and RG4/20, and Tier 2 T2EP10120-0009.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huabing Tao or Bin Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Cai, W., Li, DS. et al. Amorphous alloys for electrocatalysis: The significant role of the amorphous alloy structure. Nano Res. 16, 4277–4288 (2023). https://doi.org/10.1007/s12274-021-3682-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3682-7

Keywords

Navigation