Skip to main content
Log in

Combining in-situ TEM observations and theoretical calculation for revealing the thermal stability of CeO2 nanoflowers

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The thermal stability of CeO2 nanomaterials can directly impact both the uniformity of the supported catalysts and the catalytic behavior of CeO2 itself. However, knowledge about the thermal stability of CeO2 is still deficient. Here, we conduct in-situ transmission electron microscopy experiments and theoretical calculations to elucidate the thermal stability of CeO2 nanomaterials under different environments. A sinter (< 700 °C) and a structural decomposition (> 700 °C) are observed within CeO2 nanoflowers under O2. The sinter firstly occurs among the nanoflowers’ monomers and then the sintered nanoparticles structurally decompose to tiny nanoparticles from the strain interface. Under a vacuum environment, the CeO2 nanoflowers firstly undergo a transition from cubic fluorite CeO2 to hexagonal Ce2O3, accompanied by the oxygen release. The Ce2O3 nanoparticles further atomically sublimate from the edges to the center under high temperatures. Theoretical calculation results reveal a considerably lower energy barrier for the structural decomposition under O2 and for the sublimation under vacuum. This work provides a perspective on the structural design and performance optimization of CeO2-based catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Trovarelli, A.; de Leitenburg, C.; Boaro, M.; Dolcetti, G. The utilization of ceria in industrial catalysis. Catal. Today 1999, 50, 353–367.

    Article  CAS  Google Scholar 

  2. Montini, T.; Melchionna, M.; Monai, M.; Fornasiero, P. Fundamentals and catalytic applications of CeO2-based materials. Chem. Rev. 2016, 116, 5987–6041.

    Article  CAS  Google Scholar 

  3. Grabchenko, M. V.; Mamontov, G. V.; Zaikovskii, V. I.; La Parola, V.; Liotta, L. F.; Vodyankina, O. V. The role of metal-support interaction in Ag/CeO2 catalysts for CO and soot oxidation. Appl. Catal. B: Environ. 2020, 260, 118148.

    Article  CAS  Google Scholar 

  4. Song, J. J.; Yang, Y. X.; Liu, S. J.; Li, L.; Yu, N.; Fan, Y. T.; Chen, Z. M.; Kuai, L.; Geng, B. Y. Dispersion and support dictated properties and activities of Pt/metal oxide catalysts in heterogeneous CO oxidation. Nano Res., in press, DOI: https://doi.org/10.1007/s12274-021-3443-7.

  5. Aneggi, E.; Wiater, D.; de Leitenburg, C.; Llorca, J.; Trovarelli, A. Shape-dependent activity of ceria in soot combustion. ACS Catal. 2014, 4, 172–181.

    Article  CAS  Google Scholar 

  6. Lópeza, J. M.; Gilbank, A. L.; García, T.; Solsona, B.; Agouram, S.; Torrente-Murciano, L. The prevalence of surface oxygen vacancies over the mobility of bulk oxygen in nanostructured ceria for the total toluene oxidation. Appl. Catal. B: Environ. 2015, 174–175, 403–412.

    Article  Google Scholar 

  7. Trovarelli, A.; Llorca, J. Ceria catalysts at nanoscale: How do crystal shapes shape catalysis? ACS Catal. 2017, 7, 4716–4735.

    Article  CAS  Google Scholar 

  8. Pereira-Hernandez, X. I.; DeLaRiva, A.; Muravev, V.; Kunwar, D.; Xiong, H. F.; Sudduth, B.; Engelhard, M.; Kovarik, L.; Hensen, E. J. M.; Wang, Y. et al. Tuning Pt-CeO2 interactions by high-temperature vapor-phase synthesis for improved reducibility of lattice oxygen. Nat. Commun. 2019, 10, 1358.

    Article  Google Scholar 

  9. Zhu, M. Y.; Wen, Y. F.; Song, S. G.; Zheng, A. Q.; Li, J. C.; Sun, W. W.; Dai, Y. Q.; Yin, K. B.; Sun, L. T. Synergistic effects between polyvinylpyrrolidone and oxygen vacancies on improving the oxidase-mimetic activity of flower-like CeO2 nanozymes. Nanoscale 2020, 12, 19104–19111.

    Article  CAS  Google Scholar 

  10. Jones, J.; Xiong, H. F.; DeLaRiva, A. T.; Peterson, E. J.; Pham, H.; Challa, S. R.; Qi, G.; Oh, S.; Wiebenga, M. H.; Hernández, X. I. P. et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 2016, 353, 150–154.

    Article  CAS  Google Scholar 

  11. Cargnello, M.; Jaén, J. J. D.; Garrido, J. C. H.; Bakhmutsky, K.; Montini, T.; Gámez, J. J. C.; Gorte, R. J.; Fornasiero, P. Exceptional activity for methane combustion over modular Pd@CeO2 subunits on functionalized Al2O3. Science 2012, 337, 713–717.

    Article  CAS  Google Scholar 

  12. Hill, A. J.; Seo, C. Y.; Chen, X. Y.; Bhat, A.; Fisher, G. B.; Lenert, A.; Schwank, J. W. Thermally induced restructuring of Pd@CeO2 and Pd@SiO2 nanoparticles as a strategy for enhancing low-temperature catalytic activity. ACS Catal. 2020, 10, 1731–1741.

    Article  CAS  Google Scholar 

  13. Resasco, J.; DeRita, L.; Dai, S.; Chada, J. P.; Xu, M. J.; Yan, X. X.; Finzel, J.; Hanukovich, S.; Hoffman, A. S.; Graham, G. W. et al. Uniformity is key in defining structure-function relationships for atomically dispersed metal catalysts: The case of Pt/CeO2. J. Am. Chem. Soc. 2020, 142, 169–184.

    Article  CAS  Google Scholar 

  14. Bhalkikar, A.; Wu, T. S.; Fisher, T. J.; Sarella, A.; Zhang, D. W.; Gao, Y.; Soo, Y. L.; Cheung, C. L. Tunable catalytic activity of gadolinium-doped ceria nanoparticles for pro-oxidation of hydrogen peroxide. Nano Res. 2020, 13, 2384–2392.

    Article  CAS  Google Scholar 

  15. Hu, Z. T.; Ding, Y. Cerium oxide nanoparticles-mediated cascade catalytic chemo-photo tumor combination therapy. Nano Res., in press, DOI: https://doi.org/10.1007/s12274-021-3480-2.

  16. Zhang, S. Y.; Chen, C.; Cargnello, M.; Fornasiero, P.; Gorte, R. J.; Graham, G. W.; Pan, X. Q. Dynamic structural evolution of supported palladium-ceria core-shell catalysts revealed by in situ electron microscopy. Nat. Commun. 2015, 6, 7778.

    Article  Google Scholar 

  17. Yin, K. B.; Zhang, M. H.; Hood, Z. D.; Pan, J.; Meng, Y. S.; Chi, M. F. Self-assembled framework formed during lithiation of SnS2 nanoplates revealed by in situ electron microscopy. Acc. Chem. Res. 2017, 50, 1513–1520.

    Article  CAS  Google Scholar 

  18. Steinhauer, S.; Zhao, J. L.; Singh, V.; Pavloudis, T.; Kioseoglou, J.; Nordlund, K.; Djurabekova, F.; Grammatikopoulos, P.; Sowwan, M. Thermal oxidation of size-selected Pd nanoparticles supported on CuO nanowires: The role of the CuO-Pd interface. Chem. Mater. 2017, 29, 6153–6160.

    Article  CAS  Google Scholar 

  19. Shen, X. C.; Dai, S.; Zhang, C. L.; Zhang, S. Y.; Sharkey, S. M.; Graham, G. W.; Pan, X. Q.; Peng, Z. M. In situ atomic-scale observation of the two-dimensional Co(OH)2 transition at atmospheric pressure. Chem. Mater. 2017, 29, 4572–4579.

    Article  CAS  Google Scholar 

  20. Tan, S. F.; Chee, S. W.; Baraissov, Z.; Jin, H. M.; Tan, T. L.; Mirsaidov, U. Real-time imaging of nanoscale redox reactions over bimetallic nanoparticles. Adv. Funct. Mater. 2019, 29, 1903242.

    Article  Google Scholar 

  21. Cai, C.; Han, S. B.; Wang, Q.; Gu, M. Direct observation of yolk-shell transforming to gold single atoms and clusters with superior oxygen evolution reaction efficiency. ACS Nano 2019, 13, 8865–8871.

    Article  CAS  Google Scholar 

  22. van der Hoeven, J. E. S.; Welling, T. A. J.; Silva, T. A. G.; van den Reijen, J. E.; La Fontaine, C.; Carrier, X.; Louis, C.; van Blaaderen, A.; de Jongh, P. E. In situ observation of atomic redistribution in alloying gold-silver nanorods. ACS Nano 2018, 12, 8467–8476.

    Article  CAS  Google Scholar 

  23. Schlexer, P.; Andersen, A. B.; Sebok, B.; Chorkendorff, I.; Schiøfe, J.; Hansen, T. W. Size-dependence of the melting temperature of individual Au nanoparticles. Part. Part. Syst. Charact. 2019, 36, 1800480.

    Article  Google Scholar 

  24. Cheng, F.; Lian, L. Y.; Li, L. Y.; Rao, J. Y.; Li, C.; Qi, T. Y.; Cheng, Y. F.; Zhang, Z.; Zhang, J. B.; Wang, J. B. et al. Sublimation and related thermal stability of PbSe nanocrystals with effective size control evidenced by in situ transmission electron microscopy. Nano Energy 2020, 75, 104816.

    Article  CAS  Google Scholar 

  25. Chmielewski, A.; Meng, J.; Zhu, B. E.; Gao, Y.; Guesmi, H.; Prunier, H.; Alloyeau, D.; Wang, G.; Louis, C.; Delannoy, L. et al. Reshaping dynamics of gold nanoparticles under H2 and O2 at atmospheric pressure. ACS Nano 2019, 13, 2024–2033.

    CAS  Google Scholar 

  26. Peng, X. X.; Abelson, A.; Wang, Y.; Qian, C.; Shangguan, J. Y.; Zhang, Q. B.; Yu, L.; Yin, Z. W.; Zheng, W. J.; Bustillo, K. C. et al. In situ TEM study of the degradation of PbSe nanocrystals in air. Chem. Mater. 2019, 31, 190–199.

    Article  CAS  Google Scholar 

  27. Hui, F.; Li, C.; Chen, Y. H.; Wang, C. H.; Huang, J. P.; Li, A.; Li, W.; Zou, J.; Han, X. D. Understanding the structural evolution of Au/WO2.7 compounds in hydrogen atmosphere by atomic scale in situ environmental TEM. Nano Res. 2020, 13, 3019–3024.

    Article  CAS  Google Scholar 

  28. Crozier, P. A.; Wang, R. G.; Sharma, R. In situ environmental TEM studies of dynamic changes in cerium-based oxides nanoparticles during redox processes. Ultramicroscopy 2008, 108, 1432–1440.

    Article  CAS  Google Scholar 

  29. Wang, R. G.; Crozier, P. A.; Sharma, R. Structural transformation in ceria nanoparticles during redox processes. J. Phys. Chem. C 2009, 113, 5700–5704.

    Article  CAS  Google Scholar 

  30. Wang, R. G.; Mutinda, S. I. The dynamic shape of ceria nanoparticles. Chem. Phys. Lett. 2011, 517, 186–189.

    Article  CAS  Google Scholar 

  31. Ma, Z. X.; Sheng, L. P.; Wang, X. W.; Yuan, W. T.; Chen, S. Y.; Xue, W.; Han, G. R.; Zhang, Z.; Yang, H. S.; Lu, Y. H. et al. Oxide catalysts with ultrastrong resistance to SO2 deactivation for removing nitric oxide at low temperature. Adv. Mater. 2019, 31, 1903719.

    Article  CAS  Google Scholar 

  32. D’Angelo, A. M.; Liu, A. C. Y.; Chaffee, A. L. Oxygen uptake of Tb-CeO2: Analysis of Ce3+ and oxygen vacancies. J. Phys. Chem. C 2016, 120, 14382–14389.

    Article  Google Scholar 

  33. Hÿtch, M. J.; Snoeck, E.; Kilaas, R. Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 1998, 74, 131–146.

    Article  Google Scholar 

  34. Yoshida, H.; Kuwauchi, Y.; Jinschek, J. R.; Sun, K. J.; Tanaka, S.; Kohyama, M.; Shimada, S.; Haruta, M.; Takeda, S. Visualizing gas molecules interacting with supported nanoparticulate catalysts at reaction conditions. Science 2012, 335, 317–319.

    Article  CAS  Google Scholar 

  35. Liu, S. F.; Xu, W.; Niu, Y. M.; Zhang, B. S.; Zheng, L. R.; Liu, W.; Li, L.; Wang, J. H. Ultrastable Au nanoparticles on titania through an encapsulation strategy under oxidative atmosphere. Nat. Commun. 2019, 10, 5790.

    Article  CAS  Google Scholar 

  36. Zhu, B. E.; Xu, Z.; Wang, C. L.; Gao, Y. Shape evolution of metal nanoparticles in water vapor environment. Nano Lett. 2016, 16, 2628–2632.

    Article  CAS  Google Scholar 

  37. Zhang, X.; Meng, J.; Zhu, B. E.; Yu, J.; Zou, S. H.; Zhang, Z.; Gao, Y.; Wang, Y. In situ TEM studies of the shape evolution of Pd nanocrystals under oxygen and hydrogen environments at atmospheric pressure. Chem. Commun. 2017, 53, 13213–13216.

    Article  CAS  Google Scholar 

  38. Zhang, X.; Meng, J.; Zhu, B. E.; Yuan, W. T.; Yang, H. S.; Zhang, Z.; Gao, Y.; Wang, Y. Unexpected refacetting of palladium nanoparticles under atmospheric N2 conditions. Chem. Commun. 2018, 54, 8587–8590.

    Article  CAS  Google Scholar 

  39. Johnston-Peck, A. C.; Yang, W. C. D.; Winterstein, J. P.; Sharma, R.; Herzing, A. A. In situ oxidation and reduction of cerium dioxide nanoparticles studied by scanning transmission electron microscopy. Micron 2018, 115, 54–63.

    Article  CAS  Google Scholar 

  40. Yue, Y. H.; Yuchi, D.; Guan, P. F.; Xu, J.; Guo, L.; Liu, J. Y. Atomic scale observation of oxygen delivery during silver-oxygen nanoparticle catalysed oxidation of carbon nanotubes. Nat. Commun. 2016, 7, 12251.

    Article  CAS  Google Scholar 

  41. Bisker-Leib, V.; Doherty, M. F. Modeling the crystal shape of polar organic materials- prediction of urea crystals grown from polar and nonpolar solvents. Cryst. Growth Des. 2001, 1, 455–461.

    Article  CAS  Google Scholar 

  42. Gharagheizi, F.; Sattari, M.; Tirandazi, B. Prediction of crystal lattice energy using enthalpy of sublimation: A group contribution-based model. Ind. Eng. Chem. Res. 2011, 50, 2482–2486.

    Article  CAS  Google Scholar 

  43. Brown, I. D. The Chemical Bond in Inorganic Chemistry: The Bond Valence Model; Oxford University: Oxford, 2002.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2017YFA0204800), the National Natural Science Foundation of China (Nos. 11674052, 11525415, and 21975042), and the Project of Six Talents Climax Foundation of Jiangsu (Nos. XNL-044 and XCL-082).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kuibo Yin, Yunqian Dai or Litao Sun.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, M., Yin, K., Wen, Y. et al. Combining in-situ TEM observations and theoretical calculation for revealing the thermal stability of CeO2 nanoflowers. Nano Res. 15, 1319–1326 (2022). https://doi.org/10.1007/s12274-021-3659-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3659-6

Keywords

Navigation